281 resultados para Tina Passman
Resumo:
The quick identification of potentially threatening events is a crucial cognitive capacity to survive in a changing environment. Previous functional MRI data revealed the right dorsolateral prefrontal cortex and the region of the left intraparietal sulcus (IPS) to be involved in the perception of emotionally negative stimuli. For assessing chronometric aspects of emotion processing, we applied transcranial magnetic stimulation above these areas at different times after negative and neutral picture presentation. An interference with emotion processing was found with transcranial magnetic stimulation above the dorsolateral prefrontal cortex 200-300 ms and above the left intraparietal sulcus 240/260 ms after negative stimuli. The data suggest a parallel and conjoint involvement of prefrontal and parietal areas for the identification of emotionally negative stimuli.
Resumo:
Daily we cope with upcoming potentially disadvantageous events. Therefore, it makes sense to be prepared for the worst case. Such a 'pessimistic' bias is reflected in brain activation during emotion processing. Healthy individuals underwent functional neuroimaging while viewing emotional stimuli that were earlier cued ambiguously or unambiguously concerning their emotional valence. Presentation of ambiguously announced pleasant pictures compared with unambiguously announced pleasant pictures resulted in increased activity in the ventrolateral prefrontal, premotor and temporal cortex, and in the caudate nucleus. This was not the case for the respective negative conditions. This indicates that pleasant stimuli after ambiguous cueing provided 'unexpected' emotional input, resulting in the adaptation of brain activity. It strengthens the hypothesis of a 'pessimistic' bias of brain activation toward ambiguous emotional events.
Resumo:
Strategies of cognitive control are helpful in reducing anxiety experienced during anticipation of unpleasant or potentially unpleasant events. We investigated the associated cerebral information processing underlying the use of a specific cognitive control strategy during the anticipation of affect-laden events. Using functional magnetic resonance imaging, we examined differential brain activity during anticipation of events of unknown and negative emotional valence in a group of eighteen healthy subjects that used a cognitive control strategy, similar to "reality checking" as used in psychotherapy, compared with a group of sixteen subjects that did not exert cognitive control. While expecting unpleasant stimuli, the "cognitive control" group showed higher activity in left medial and dorsolateral prefrontal cortex areas but reduced activity in the left extended amygdala, pulvinar/lateral geniculate nucleus and fusiform gyrus. Cognitive control during the "unknown" expectation was associated with reduced amygdalar activity as well and further with reduced insular and thalamic activity. The amygdala activations associated with cognitive control correlated negatively with the reappraisal scores of an emotion regulation questionnaire. The results indicate that cognitive control of particularly unpleasant emotions is associated with elevated prefrontal cortex activity that may serve to attenuate emotion processing in for instance amygdala, and, notably, in perception related brain areas.
Resumo:
Since we do not know what future holds for us, we prepare for expected emotional events in order to deal with a pleasant or threatening environment. From an evolutionary perspective, it makes sense to be particularly prepared for the worst-case scenario. We were interested to evaluate whether this assumption is reflected in the central nervous information processing associated with expecting visual stimuli of unknown emotional valence. While being scanned with functional magnetic resonance imaging, healthy subjects were cued to expect and then perceive visual stimuli with a known emotional valence as pleasant, unpleasant, and neutral, as well as stimuli of unknown valence that could have been either pleasant or unpleasant. While anticipating pictures of unknown valence, the activity of emotion processing brain areas was similar to activity associated with expecting unpleasant pictures, but there were no areas in which the activity was similar to the activity when expecting pleasant pictures. The activity of the revealed regions, including bilateral insula, right inferior frontal gyrus, medial thalamus, and red nucleus, further correlated with the individual ratings of mood: the worse the mood, the higher the activity. These areas are supposedly involved in a network for internal adaptation and preparation processes in order to act according to potential or certain unpleasant events. Their activity appears to reflect a 'pessimistic' bias by anticipating the events of unknown valence to be unpleasant.
Evolution of capital cities economies: Towards a knowledge intensive and thus more resilient economy