220 resultados para Debugging in computer science.
Resumo:
The usual Skolemization procedure, which removes strong quantifiers by introducing new function symbols, is in general unsound for first-order substructural logics defined based on classes of complete residuated lattices. However, it is shown here (following similar ideas of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-order substructural logics with a semantics satisfying certain witnessing conditions admit a “parallel” Skolemization procedure where a strong quantifier is removed by introducing a finite disjunction or conjunction (as appropriate) of formulas with multiple new function symbols. These logics typically lack equivalent prenex forms. Also, semantic consequence does not in general reduce to satisfiability. The Skolemization theorems presented here therefore take various forms, applying to the left or right of the consequence relation, and to all formulas or only prenex formulas.
Resumo:
Diet-related chronic diseases severely affect personal and global health. However, managing or treating these diseases currently requires long training and high personal involvement to succeed. Computer vision systems could assist with the assessment of diet by detecting and recognizing different foods and their portions in images. We propose novel methods for detecting a dish in an image and segmenting its contents with and without user interaction. All methods were evaluated on a database of over 1600 manually annotated images. The dish detection scored an average of 99% accuracy with a .2s/image run time, while the automatic and semi-automatic dish segmentation methods reached average accuracies of 88% and 91% respectively, with an average run time of .5s/image, outperforming competing solutions.
Resumo:
Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.
Resumo:
This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.
Resumo:
We present a novel surrogate model-based global optimization framework allowing a large number of function evaluations. The method, called SpLEGO, is based on a multi-scale expected improvement (EI) framework relying on both sparse and local Gaussian process (GP) models. First, a bi-objective approach relying on a global sparse GP model is used to determine potential next sampling regions. Local GP models are then constructed within each selected region. The method subsequently employs the standard expected improvement criterion to deal with the exploration-exploitation trade-off within selected local models, leading to a decision on where to perform the next function evaluation(s). The potential of our approach is demonstrated using the so-called Sparse Pseudo-input GP as a global model. The algorithm is tested on four benchmark problems, whose number of starting points ranges from 102 to 104. Our results show that SpLEGO is effective and capable of solving problems with large number of starting points, and it even provides significant advantages when compared with state-of-the-art EI algorithms.
Resumo:
This work deals with parallel optimization of expensive objective functions which are modelled as sample realizations of Gaussian processes. The study is formalized as a Bayesian optimization problem, or continuous multi-armed bandit problem, where a batch of q > 0 arms is pulled in parallel at each iteration. Several algorithms have been developed for choosing batches by trading off exploitation and exploration. As of today, the maximum Expected Improvement (EI) and Upper Confidence Bound (UCB) selection rules appear as the most prominent approaches for batch selection. Here, we build upon recent work on the multipoint Expected Improvement criterion, for which an analytic expansion relying on Tallis’ formula was recently established. The computational burden of this selection rule being still an issue in application, we derive a closed-form expression for the gradient of the multipoint Expected Improvement, which aims at facilitating its maximization using gradient-based ascent algorithms. Substantial computational savings are shown in application. In addition, our algorithms are tested numerically and compared to state-of-the-art UCB-based batchsequential algorithms. Combining starting designs relying on UCB with gradient-based EI local optimization finally appears as a sound option for batch design in distributed Gaussian Process optimization.
Resumo:
The logic PJ is a probabilistic logic defined by adding (noniterated) probability operators to the basic justification logic J. In this paper we establish upper and lower bounds for the complexity of the derivability problem in the logic PJ. The main result of the paper is that the complexity of the derivability problem in PJ remains the same as the complexity of the derivability problem in the underlying logic J, which is π[p/2] -complete. This implies that the probability operators do not increase the complexity of the logic, although they arguably enrich the expressiveness of the language.
Resumo:
We present a probabilistic justification logic, PPJ, to study rational belief, degrees of belief and justifications. We establish soundness and completeness for PPJ and show that its satisfiability problem is decidable. In the last part we use PPJ to provide a solution to the lottery paradox.
Resumo:
When a project is realized in a globalized environment, multiple stakeholders from different organizations work on the same system. Depending on the stakeholders and their organizations, various (possibly overlapping) concerns are raised in the development of the system. In this context a Domain Specific Language (DSL) supports the work of a group of stakeholders who are responsible for addressing a specific set of concerns. This chapter identifies the open challenges arising from the coordination of globalized domain-specific languages. We identify two types of coordination: technical coordination and social coordination. After presenting an overview of the current state of the art, we discuss first the open challenges arising from the composition of multiple DSLs, and then the open challenges associated to the collaboration in a globalized environment.
Resumo:
Scoping behavioral variations to dynamic extents is useful to support non-functional concerns that otherwise result in cross-cutting code. Unfortunately, such forms of scoping are difficult to obtain with traditional reflection or aspects. We propose delegation proxies, a dynamic proxy model that supports behavioral intercession through the interception of various interpretation operations. Delegation proxies permit different behavioral variations to be easily composed together. We show how delegation proxies enable behavioral variations that can propagate to dynamic extents. We demonstrate our approach with examples of behavioral variations scoped to dynamic extents that help simplify code related to safety, reliability, and monitoring.