225 resultados para ventricular remodeling.
Resumo:
OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.
Resumo:
In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future.
Resumo:
Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.
Resumo:
OBJECTIVE In patients with aortic stenosis, left ventricular systolic torsion (pT) is increased to overcome excessive afterload. This study assessed left ventricular torsion before and immediately after surgical valve replacement and tested the instant effect of fluid loading. DESIGN Prospective, clinical single-center study. SETTING Intensive care unit of a university hospital. PARTICIPANTS 12 patients undergoing elective aortic valve replacement for aortic stenosis. INTERVENTIONS Echocardiography was performed on the day before surgery, within 18 hours after surgery including a fluid challenge, and after 2.5 years. MEASUREMENTS AND MAIN RESULTS pT decreased early postoperatively by 21.2% (23.4° ± 5.6° to 18.4° ± 6.9°; p = 0.012) and reached preoperative values at 2.5 years follow-up (24 ± 7). Peak diastolic untwisting velocity occurred later early postoperatively (13% ± 8% to 21% ± 9.4%; p = 0.019) and returned toward preoperative values at follow-up (10.2 ± 4.7°). The fluid challenge increased central venous pressure (8 ± 4 mmHg to 11 ± 4 mmHg; p = 0.003) and reduced peak systolic torsion velocity (138.7 ± 37.6/s to 121.3 ± 32/s; p = 0.032). pT decreased in 3 and increased in 8 patients after fluid loading. Patients whose pT increased had higher early mitral inflow velocity postoperatively (p = 0.04) than those with decreasing pT. Patients with reduced pT after fluid loading received more fluids (p = 0.04) and had a higher positive fluid balance during the intensive care unit stay (p = 0.03). Torsion after fluid loading correlated with total fluid input (p = 0.001) and cumulative fluid balance (p = 0.002). CONCLUSIONS pT decreased early after aortic valve replacement but remained elevated despite elimination of aortic stenosis. After 2.5 years, torsion had returned to preoperative levels.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.
Resumo:
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Resumo:
Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.
Resumo:
OBJECTIVES: Although regular physical exercise clearly reduces cardiovascular morbidity risk, long-term endurance sports practice has been recognized as a risk factor for atrial fibrillation (AF). However, the mechanisms how endurance sports can lead to AF are not yet clear. The aim of our present study was to investigate the influence of long-term endurance training on vagal tone, atrial size, and inflammatory profile in professional elite soccer players. METHODS: A total of 25 professional major league soccer players (mean age 24+/-4 years) and 20 sedentary controls (mean age 26+/-3 years) were included in the study and consecutively examined. All subjects underwent a sports cardiology check-up with physical examination, electrocardiography, echocardiography, exercise testing on a bicycle ergometer, and laboratory analysis [standard laboratory and cytokine profile: interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, IL-8, IL-10]. RESULTS: Athletes were divided into two groups according to presence or absence of an early repolarization (ER) pattern, defined as a ST-segment elevation at the J-point (STE) >/=0.1mm in 2 leads. Athletes with an ER pattern showed significantly lower heart rate and an increased E/e' ratio compared to athletes without an ER pattern. STE significantly correlated with E/e' ratio as well as with left atrial (LA) volume. The pro-inflammatory cytokines IL-6, IL-8, TNF-alpha as well as the anti-inflammatory cytokine IL-10 were significantly elevated in all soccer players. However, athletes with an ER pattern had significantly higher IL-6 plasma levels than athletes without ER pattern. Furthermore, athletes with "high" level IL-6 had significantly larger LA volumes than players with "low" level IL-6. CONCLUSIONS: Athletes with an ER pattern had significantly higher E/e' ratios, reflecting higher atrial filling pressures, higher LA volume, and higher IL-6 plasma levels. All these factors may contribute to atrial remodeling over time and thus increase the risk of AF in long-term endurance sports.
Resumo:
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is mainly an autosomal dominant disease characterized by fibrofatty infiltration of the right ventricle, leading to ventricular arrhythmias. Mutations in desmosomal proteins can be identified in about half of the patients. The pathogenic mechanisms leading to disease expression remain unclear. OBJECTIVE The purpose of this study was to investigate myocardial expression profiles of candidate molecules involved in the pathogenesis of ARVC/D. METHODS Myocardial messenger RNA (mRNA) expression of 62 junctional molecules, 5 cardiac ion channel molecules, 8 structural molecules, 4 apoptotic molecules, and 6 adipogenic molecules was studied. The averaged expression of candidate mRNAs was compared between ARVC/D samples (n = 10), nonfamilial dilated cardiomyopathy (DCM) samples (n = 10), and healthy control samples (n = 8). Immunohistochemistry and quantitative protein expression analysis were performed. Genetic analysis using next generation sequencing was performed in all patients with ARVC/D. RESULTS Following mRNA levels were significantly increased in patients with ARVC/D compared to those with DCM and healthy controls: phospholamban (P ≤ .001 vs DCM; P ≤ .001 vs controls), healthy tumor protein 53 apoptosis effector (P = .001 vs DCM; P ≤ .001 vs controls), and carnitine palmitoyltransferase 1β (P ≤ .001 vs DCM; P = 0.008 vs controls). Plakophillin-2 (PKP-2) mRNA was downregulated in patients with ARVC/D with PKP-2 mutations compared with patients with ARVC/D without PKP-2 mutations (P = .04). Immunohistochemistry revealed significantly increased protein expression of phospholamban, tumor protein 53 apoptosis effector, and carnitine palmitoyltransferase 1β in patients with ARVC/D and decreased PKP-2 expression in patients with ARVC/D carrying a PKP-2 mutation. CONCLUSION Changes in the expression profiles of sarcolemmal calcium channel regulation, apoptosis, and adipogenesis suggest that these molecular pathways may play a critical role in the pathogenesis of ARVC/D, independent of the underlying genetic mutations.
Resumo:
BACKGROUND There is considerable interindividual variability in pulmonary artery pressure among high-altitude (HA) dwellers, but the underlying mechanism is not known. At low altitude, a patent foramen ovale (PFO) is present in about 25% of the general population. Its prevalence is increased in clinical conditions associated with pulmonary hypertension and arterial hypoxemia, and it is thought to aggravate these problems. METHODS We searched for a PFO (transesophageal echocardiography) in healthy HA dwellers (n = 22) and patients with chronic mountain sickness (n = 35) at 3,600 m above sea level and studied its effects (transthoracic echocardiography) on right ventricular (RV) function, pulmonary artery pressure, and vascular resistance at rest and during mild exercise (50 W), an intervention designed to further increase pulmonary artery pressure. RESULTS The prevalence of PFO (32%) was similar to that reported in low-altitude populations and was not different in participants with and without chronic mountain sickness. Its presence was associated with RV enlargement at rest and an exaggerated increase in right-ventricular-to-right-atrial pressure gradient (25 ± 7 mm Hg vs 15 ± 9 mm Hg, P < .001) and a blunted increase in fractional area change of the right ventricle (3% [-1%, 5%] vs 7% [3%, 16%], P = .008) during mild exercise. CONCLUSIONS These findings show, we believe for the first time, that although the prevalence of PFO is not increased in HA dwellers, its presence appears to facilitate pulmonary vasoconstriction and RV dysfunction during a mild physical effort frequently associated with daily activity. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology.