245 resultados para immediate implantation
Resumo:
This article provides an overview on procedure-related issues and uncertainties in outcomes after transcatheter aortic valve implantation (TAVI). The different access sites and how to select them in an individual patient are discussed. Also, the occurrence and potential predictors of aortic regurgitation (AR) after TAVI are addressed. The different methods to quantify AR are reviewed, and it appears that accurate and reproducible quantification is suboptimal. Complications such as prosthesis-patient mismatch and conduction abnormalities (and need for permanent pacemaker) are discussed, as well as cerebrovascular events, which emphasize the development of optimal anti-coagulative strategies. Finally, recent registries have shown the adoption of TAVI in the real world, but longer follow-up studies are needed to evaluate the outcome (but also prosthesis durability). Additionally, future studies are briefly discussed, which will address the use of TAVI in pure AR and lower-risk patients.
Resumo:
An exponential increase in the use of transcatheter aortic valve implantation (TAVI) in patients with severe aortic stenosis has been witnessed over the recent years. The current article reviews different areas of uncertainty related to patient selection. The use and limitations of risk scores are addressed, followed by an extensive discussion on the value of three-dimensional imaging for prosthesis sizing and the assessment of complex valve anatomy such as degenerated bicuspid valves. The uncertainty about valvular stenosis severity in patients with a mismatch between the transvalvular gradient and the aortic valve area, and how integrated use of echocardiography and computed tomographic imaging may help, is also addressed. Finally, patients referred for TAVI may have concomitant mitral regurgitation and/or coronary artery disease and the management of these patients is discussed.
Resumo:
IMPORTANCE Owing to a considerable shift toward bioprosthesis implantation rather than mechanical valves, it is expected that patients will increasingly present with degenerated bioprostheses in the next few years. Transcatheter aortic valve-in-valve implantation is a less invasive approach for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING, AND PARTICIPANTS Correlates for survival were evaluated using a multinational valve-in-valve registry that included 459 patients with degenerated bioprosthetic valves undergoing valve-in-valve implantation between 2007 and May 2013 in 55 centers (mean age, 77.6 [SD, 9.8] years; 56% men; median Society of Thoracic Surgeons mortality prediction score, 9.8% [interquartile range, 7.7%-16%]). Surgical valves were classified as small (≤21 mm; 29.7%), intermediate (>21 and <25 mm; 39.3%), and large (≥25 mm; 31%). Implanted devices included both balloon- and self-expandable valves. MAIN OUTCOMES AND MEASURES Survival, stroke, and New York Heart Association functional class. RESULTS Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83.2% (95% CI, 80.8%-84.7%; 62 death events; 228 survivors). Patients in the stenosis group had worse 1-year survival (76.6%; 95% CI, 68.9%-83.1%; 34 deaths; 86 survivors) in comparison with the regurgitation group (91.2%; 95% CI, 85.7%-96.7%; 10 deaths; 76 survivors) and the combined group (83.9%; 95% CI, 76.8%-91%; 18 deaths; 66 survivors) (P = .01). Similarly, patients with small valves had worse 1-year survival (74.8% [95% CI, 66.2%-83.4%]; 27 deaths; 57 survivors) vs with intermediate-sized valves (81.8%; 95% CI, 75.3%-88.3%; 26 deaths; 92 survivors) and with large valves (93.3%; 95% CI, 85.7%-96.7%; 7 deaths; 73 survivors) (P = .001). Factors associated with mortality within 1 year included having small surgical bioprosthesis (≤21 mm; hazard ratio, 2.04; 95% CI, 1.14-3.67; P = .02) and baseline stenosis (vs regurgitation; hazard ratio, 3.07; 95% CI, 1.33-7.08; P = .008). CONCLUSIONS AND RELEVANCE In this registry of patients who underwent transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic valves, overall 1-year survival was 83.2%. Survival was lower among patients with small bioprostheses and those with predominant surgical valve stenosis.
Resumo:
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Resumo:
Aims: To investigate the extent and the circumferential distribution of the neointima tissue developed following an Absorb bioresorbable vascular scaffold (BVS) implantation. Methods and results: Twenty-three patients who were treated with the Absorb BVS and had optical coherence tomographic examination after scaffold implantation, at six-month and at two-year follow-up, were included in the current analysis. The lumen and the scaffold borders were detected and the circumferential thickness of the neointima was measured at one degree intervals. The symmetry of the neointima was defined as: minimum/maximum thickness. The lumen area was decreased at six months compared to baseline but it did not change between six-month and two-year follow-up (baseline: 7.49 [6.13-8.00] mm2, six months: 6.31 (4.75-7.06) mm2, two years: 6.01 [4.67-7.11] mm2, p=0.373). However, the mean neointima thickness (six months: 189 [173-229] μm, two years: 258 [222-283] μm, p<0.0001) and the symmetry index of the neointima (six months: 0.06 [0.02-0.09], two years: 0.27 [0.24-0.36], p<0.0001) were increased at two years. Full circumferential coverage of the vessel wall by neointima tissue was seen in 91% of the studied frames at two years. Conclusions: This study demonstrates that after an Absorb BVS implantation neointima tissue develops that covers almost the whole circumference of the vessel wall. In contrast to the metallic stents, the neointima tissue does not compromise the luminal dimensions. Further research is required to evaluate the neointimal characteristics and assess the potential value of the device in passivating high-risk plaques.
Resumo:
AIM The optimal duration of dual antiplatelet therapy (DAPT) following the use of new generation drug-eluting stents is unknown. METHODS AND RESULTS The association between DAPT interruption and the rates of stent thrombosis (ST) and cardiac death/target-vessel myocardial infarction (CD/TVMI) in patients receiving a Resolute zotarolimus-eluting stent (R-ZES) was analysed in 4896 patients from the pooled RESOLUTE clinical programme. Daily acetylsalicylate (ASA) and a thienopyridine for 6-12 months were prescribed. A DAPT interruption was defined as any interruption of ASA and/or a thienopyridine of >1 day; long interruptions were >14 days. Three groups were analysed: no interruption, interruption during the first month, and >1-12 months. There were 1069 (21.83%) patients with a DAPT interruption and 3827 patients with no interruption. Among the 166 patients in the 1-month interruption group, 6 definite/probable ST events occurred (3.61%; all long DAPT interruptions), and among the 903 patients in the >1-12 months (60% occurred between 6 and 12 months) interruption group, 1 ST event occurred (0.11%; 2-day DAPT interruption). Among patients with no DAPT interruption, 32 ST events occurred (0.84%). Rates of CD/TVMI were 6.84% in the 1-month long interruption group, 1.41% in the >1-12 months long interruption group, and 4.08% in patients on continuous DAPT. CONCLUSION In a pooled population of patients receiving an R-ZES, DAPT interruptions within 1 month are associated with a high risk of adverse outcomes. Dual antiplatelet therapy interruptions between 1 and 12 months were associated with low rates of ST and adverse cardiac outcomes. Randomized clinical trials are needed to determine whether early temporary or permanent interruption of DAPT is truly safe. CLINICAL TRIALSGOV IDENTIFIERS NCT00617084; NCT00726453; NCT00752128; NCT00927940.
Resumo:
A major component of minimally invasive cochlear implantation is atraumatic scala tympani (ST) placement of the electrode array. This work reports on a semiautomatic planning paradigm that uses anatomical landmarks and cochlear surface models for cochleostomy target and insertion trajectory computation. The method was validated in a human whole head cadaver model (n = 10 ears). Cochleostomy targets were generated from an automated script and used for consecutive planning of a direct cochlear access (DCA) drill trajectory from the mastoid surface to the inner ear. An image-guided robotic system was used to perform both, DCA and cochleostomy drilling. Nine of 10 implanted specimens showed complete ST placement. One case of scala vestibuli insertion occurred due to a registration/drilling error of 0.79 mm. The presented approach indicates that a safe cochleostomy target and insertion trajectory can be planned using conventional clinical imaging modalities, which lack sufficient resolution to identify the basilar membrane.
Resumo:
BACKGROUND Patients with muscle-invasive urothelial carcinoma of the bladder have poor survival after cystectomy. The EORTC 30994 trial aimed to compare immediate versus deferred cisplatin-based combination chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder. METHODS This intergroup, open-label, randomised, phase 3 trial recruited patients from hospitals across Europe and Canada. Eligible patients had histologically proven urothelial carcinoma of the bladder, pT3-pT4 disease or node positive (pN1-3) M0 disease after radical cystectomy and bilateral lymphadenectomy, with no evidence of any microscopic residual disease. Within 90 days of cystectomy, patients were centrally randomly assigned (1:1) by minimisation to either immediate adjuvant chemotherapy (four cycles of gemcitabine plus cisplatin, high-dose methotrexate, vinblastine, doxorubicin, and cisplatin [high-dose MVAC], or MVAC) or six cycles of deferred chemotherapy at relapse, with stratification for institution, pT category, and lymph node status according to the number of nodes dissected. Neither patients nor investigators were masked. Overall survival was the primary endpoint; all analyses were by intention to treat. The trial was closed after recruitment of 284 of the planned 660 patients. This trial is registered with ClinicalTrials.gov, number NCT00028756. FINDINGS From April 29, 2002, to Aug 14, 2008, 284 patients were randomly assigned (141 to immediate treatment and 143 to deferred treatment), and followed up until the data cutoff of Aug 21, 2013. After a median follow-up of 7·0 years (IQR 5·2-8·7), 66 (47%) of 141 patients in the immediate treatment group had died compared with 82 (57%) of 143 in the deferred treatment group. No significant improvement in overall survival was noted with immediate treatment when compared with deferred treatment (adjusted HR 0·78, 95% CI 0·56-1·08; p=0·13). Immediate treatment significantly prolonged progression-free survival compared with deferred treatment (HR 0·54, 95% CI 0·4-0·73, p<0·0001), with 5-year progression-free survival of 47·6% (95% CI 38·8-55·9) in the immediate treatment group and 31·8% (24·2-39·6) in the deferred treatment group. Grade 3-4 myelosuppression was reported in 33 (26%) of 128 patients who received treatment in the immediate chemotherapy group versus 24 (35%) of 68 patients who received treatment in the deferred chemotherapy group, neutropenia occurred in 49 (38%) versus 36 (53%) patients, respectively, and thrombocytopenia in 36 (28%) versus 26 (38%). Two patients died due to toxicity, one in each group. INTERPRETATION Our data did not show a significant improvement in overall survival with immediate versus deferred chemotherapy after radical cystectomy and bilateral lymphadenectomy for patients with muscle-invasive urothelial carcinoma. However, the trial is limited in power, and it is possible that some subgroups of patients might still benefit from immediate chemotherapy. An updated individual patient data meta-analysis and biomarker research are needed to further elucidate the potential for survival benefit in subgroups of patients. FUNDING Lilly, Canadian Cancer Society Research.
Resumo:
BACKGROUND Up to 1 in 6 patients undergoing transcatheter aortic valve implantation (TAVI) present with low-ejection fraction, low-gradient (LEF-LG) severe aortic stenosis and concomitant relevant mitral regurgitation (MR) is present in 30% to 55% of these patients. The effect of MR on clinical outcomes of LEF-LG patients undergoing TAVI is unknown. METHODS AND RESULTS Of 606 consecutive patients undergoing TAVI, 113 (18.7%) patients with LEF-LG severe aortic stenosis (mean gradient ≤40 mm Hg, aortic valve area <1.0 cm(2), left ventricular ejection fraction <50%) were analyzed. LEF-LG patients were dichotomized into ≤mild MR (n=52) and ≥moderate MR (n=61). Primary end point was all-cause mortality at 1 year. No differences in mortality were observed at 30 days (P=0.76). At 1 year, LEF-LG patients with ≥moderate MR had an adjusted 3-fold higher rate of all-cause mortality (11.5% versus 38.1%; adjusted hazard ratio, 3.27 [95% confidence interval, 1.31-8.15]; P=0.011), as compared with LEF-LG patients with ≤mild MR. Mortality was mainly driven by cardiac death (adjusted hazard ratio, 4.62; P=0.005). As compared with LEF-LG patients with ≥moderate MR assigned to medical therapy, LEF-LG patients with ≥moderate MR undergoing TAVI had significantly lower all-cause mortality (hazard ratio, 0.38; 95% confidence interval, 0.019-0.75) at 1 year. CONCLUSIONS Moderate or severe MR is a strong independent predictor of late mortality in LEF-LG patients undergoing TAVI. However, LEF-LG patients assigned to medical therapy have a dismal prognosis independent of MR severity suggesting that TAVI should not be withheld from symptomatic patients with LEF-LG severe aortic stenosis even in the presence of moderate or severe MR.
Resumo:
Transcatheter aortic valve implantation is a feasible therapeutic option for selected patients with severe aortic stenosis and high or prohibitive risk for standard surgery. Lung transplant recipients are often considered high-risk patients for heart surgery because of their specific transplant-associated characteristics and comorbidities. We report a case of successful transfemoral transcatheter aortic valve replacement in a lung transplant recipient with a symptomatic severe aortic stenosis, severe left ventricular dysfunction, and end-stage renal failure 9 years after bilateral lung transplantation.