155 resultados para Optic nerve.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve. Only few studies have morphometrically evaluated the course of the ASAN. Midfacial segments of ten hemisectioned fresh adult cadaver heads were dissected to uncover the anterior wall of the maxilla. Specimens were subsequently decalcified and the bone overlying the ASAN was removed under a microscope to expose the ASAN. Its branching pattern from the infraorbital nerve was recorded, and the course of the ASAN within the anterior wall of the maxillary sinus was morphometrically assessed measuring distances to predefined landmarks using a digital caliper. A distinct ASAN was observed in all specimens. It arose lateral (six cases) or inferior (four cases) from the infraorbital nerve. The point of origin was located at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. The ASAN was located on average 2.8 ± 5.13 mm lateral to the infraorbital foramen. After coursing medially, the ASAN ran inferior to the foramen at a mean distance of 5.5 ± 3.07 mm. When approaching the nasal aperture, the loop of the ASAN was on average 13.6 ± 3.07 mm above the nasal floor. The horizontal mean distance from the ASAN to the nasal aperture was 4.3 ± 2.74 mm halfway down from the loop, and 3.3 ± 2.60 mm at the floor of the nose, respectively. In conclusion, the present study evaluated the course of the ASAN relative to the infraorbital foramen and nasal aperture. This information is helpful to avoid damage to this anatomical structure during interventions in the infraobrital region of the maxilla. Further, knowledge of the course of the ASAN and of its bony correlate (canalis sinuosus) may be valuable in interpreting anesthetic or radiologic findings in the anterior maxilla.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Tibial nerve stimulation (TNS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option for patients with an underlying neurological disorder. OBJECTIVE We systematically reviewed all available evidence on the efficacy and safety of TNS for treating neurogenic lower urinary tract dysfunction (NLUTD). EVIDENCE ACQUISITION The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. EVIDENCE SYNTHESIS After screening 1943 articles, 16 studies (4 randomized controlled trials [RCTs], 9 prospective cohort studies, 2 retrospective case series, and 1 case report) enrolling 469 patients (283 women and 186 men) were included. Five studies reported on acute TNS and 11 on chronic TNS. In acute and chronic TNS, the mean increase of maximum cystometric capacity ranged from 56 to 132mL and from 49 to 150mL, and the mean increase of bladder volume at first detrusor overactivity ranged from 44 to 92mL and from 93 to 121mL, respectively. In acute and chronic TNS, the mean decrease of maximum detrusor pressure during the storage phase ranged from 5 to 15cm H2O and from 4 to 21cm H2O, respectively. In chronic TNS, the mean decrease in number of voids per 24h, in number of leakages per 24h, and in postvoid residual ranged from 3 to 7, from 1 to 4, and from 15 to 55mL, respectively. No TNS-related adverse events have been reported. Risk of bias and confounding was high in most studies. CONCLUSIONS Although preliminary data of RCTs and non-RCTs suggest TNS might be effective and safe for treating NLUTD, the evidence base is poor, derived from small, mostly noncomparative studies with a high risk of bias and confounding. More reliable data from well-designed RCTs are needed to reach definitive conclusions. PATIENT SUMMARY Early data suggest tibial nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT Transcutaneous electrical nerve stimulation (TENS) is a promising therapy for non-neurogenic lower urinary tract dysfunction and might also be a valuable option in patients with an underlying neurological disorder. OBJECTIVE We systematically reviewed all available evidence on the efficacy and safety of TENS for treating neurogenic lower urinary tract dysfunction. EVIDENCE ACQUISITION The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement. EVIDENCE SYNTHESIS After screening 1943 articles, 22 studies (two randomised controlled trials, 14 prospective cohort studies, five retrospective case series, and one case report) enrolling 450 patients were included. Eleven studies reported on acute TENS and 11 on chronic TENS. In acute TENS and chronic TENS, the mean increase of maximum cystometric capacity ranged from 69ml to 163ml and from 4ml to 156ml, the mean change of bladder volume at first detrusor overactivity from a decrease of 13ml to an increase of 175ml and from an increase of 10ml to 120ml, a mean decrease of maximum detrusor pressure at first detrusor overactivity from 18 cmH20 to 72 cmH20 and 8 cmH20, and a mean decrease of maximum storage detrusor pressure from 20 cmH20 to 58 cmH2O and from 3 cmH20 to 8 cmH2O, respectively. In chronic TENS, a mean decrease in the number of voids and leakages per 24h ranged from 1 to 3 and from 0 to 4, a mean increase of maximum flow rate from 2ml/s to 7ml/s, and a mean change of postvoid residual from an increase of 26ml to a decrease of 85ml. No TENS-related serious adverse events have been reported. Risk of bias and confounding was high in most studies. CONCLUSIONS Although preliminary data suggest TENS might be effective and safe for treating neurogenic lower urinary tract dysfunction, the evidence base is poor and more reliable data from well-designed randomised controlled trials are needed to make definitive conclusions. PATIENT SUMMARY Early data suggest that transcutaneous electrical nerve stimulation might be effective and safe for treating neurogenic lower urinary tract dysfunction, but more reliable evidence is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The aim of this study was to compare orthodromic sural nerve conduction study (NCS) results using ultrasound-guided needle positioning (USNP) to surface electrode recordings. METHODS 51 healthy subjects aged 24 - 80 years, divided into 5 age groups, were examined. Electrical stimuli were applied behind the lateral malleolus. Sensory nerve action potentials (SNAPs) were recorded 8 and 15 cm proximally with surface and needle electrodes. RESULTS Mean SNAP amplitudes in µV (surface/needle electrodes) averaged 12.7 (SD 7.6)/40.6 (SD 20.8), P<0.001, for subjects aged 20-29 years, and 5.0 (SD 2.4)/19.8 (SD 9.8), P<0.01, for subjects aged > 60 years. SNAP amplitudes were smaller at the proximal recording location. DISCUSSION NCS using USNP yield higher amplitude responses than surface electrodes in all age groups at all recording sites. SNAP amplitudes are smaller at proximal recording locations due to sural nerve branching. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Arrhythmia origin in close proximity to the phrenic nerve (PN) can hinder successful catheter ablation. We describe our approach with epicardial PN displacement in such instances. METHODS AND RESULTS PN displacement via percutaneous pericardial access was attempted in 13 patients (age 49±16 years, 9 females) with either atrial tachycardia (6 patients) or atrial fibrillation triggered from a superior vena cava focus (1 patient) adjacent to the right PN or epicardial ventricular tachycardia origin adjacent to the left PN (6 patients). An epicardially placed steerable sheath/4 mm-catheter combination (5 patients) or a vascular or an esophageal balloon (8 patients) was ultimately successful. Balloon placement was often difficult requiring manipulation via a steerable sheath. In 2 ventricular tachycardia cases, absence of PN capture was achieved only once the balloon was directly over the ablation catheter. In 3 atrial tachycardia patients, PN displacement was not possible with a balloon; however, a steerable sheath/catheter combination was ultimately successful. PN displacement allowed acute abolishment of all targeted arrhythmias. No PN injury occurred acutely or in follow up. Two patients developed acute complications (pleuro-pericardial fistula 1 and pericardial bleeding 1). Survival free of target arrhythmia was achieved in all atrial tachycardia patients; however, a nontargeted ventricular tachycardia recurred in 1 patient at a median of 13 months' follow up. CONCLUSIONS Arrhythmias originating in close proximity to the PN can be targeted successfully with PN displacement with an epicardially placed steerable sheath/catheter combination, or balloon, but this strategy can be difficult to implement. Better tools for phrenic nerve protection are desirable.