190 resultados para LEFT-VENTRICULAR FUNCTION
Resumo:
Aims: We aimed to assess the impact of B-type natriuretic peptide (BNP) on short-term outcomes in patients undergoing transcatheter aortic valve implantation (TAVI). Methods and results: Of 500 consecutive patients with severe aortic stenosis undergoing TAVI at our institution, we studied 340 patients who had a BNP assessment prior to TAVI. Patients were divided into tertiles - low: BNP ≤201 pg/mL (n=114), mid: BNP 202-595 pg/mL (n=113) and high: BNP ≥596 pg/mL (n=113). The primary endpoint was all-cause mortality, cardiac death and major adverse cardiac and cerebrovascular events (MACCE; death, major stroke and myocardial infarction) at 30 days. Compared with low tertile, high tertile patients were at higher baseline surgical risk (STS score 5.5±3.0 vs. 7.4±4.1, p=0.002). On echocardiography, high tertile patients had smaller valve areas (0.74±0.21 vs. 0.66±0.23 cm2, p=0.008), higher left ventricular (LV) mass indices (123.40±33.66 vs. 168.22±47.96 g/m2, p<0.001) and lower LV ejection fractions (61.59±7.18 vs. 42.65±15.41%, p<0.001) as compared with low tertile patients. At 30 days, a significantly higher incidence of death (hazard ratio [HR] 7.41, p=0.001) cardiac death (HR 5.82, p=0.006) and MACCE (HR 9.04, p<0.001) was observed among high as compared to low tertile patients. Conclusions: In TAVI patients, higher BNP values at baseline are associated with an increased risk for an adverse event periprocedurally and after 30 days, respectively.
Resumo:
OBJECTIVES Percutaneous closure of the transapical (TA) access site for large-calibre devices is an unsolved issue. We report the first experimental data on the TA PLUG device for true-percutaneous closure following large apical access for transcatheter aortic valve implantation. METHODS The TA PLUG, a self-sealing full-core closure device, was implanted in an acute animal study in six pigs (60.2 ± 0.7 kg). All the pigs received 100 IU/kg of heparin. The targeted activated clotting time was left to normalize spontaneously. After accessing the left ventricular apex with a 39 French introducer, the closure plug device was delivered with a 33 French over-the-wire system under fluoroscopic guidance into the apex. Time to full haemostasis as well as rate of bleeding was recorded. Self-anchoring properties were assessed by haemodynamic push stress under adrenalin challenge. An additional feasibility study was conducted in four pigs (58.4 ± 1.1 kg) with full surgical exposure of the apex, and assessed device anchoring by pull-force measurements with 0.5 Newton (N) increments. All the animals were electively sacrified. Post-mortem analysis of the heart was performed and the renal embolic index assessed. RESULTS Of six apical closure devices, five were correctly inserted and fully deployed at the first attempt. One became blocked in the delivery system and was placed successfully at the second attempt. In all the animals, complete haemostasis was immediate and no leak was recorded during the 5-h observation period. Neither leak nor any device dislodgement was observed under haemodynamic push stress with repeated left ventricular peak pressure of up to 220 mmHg. In the feasibility study assessing pull-stressing, device migration occurred at a force of 3.3 ± 0.5 N corresponding to 247.5 mmHg. Post-mortem analyses confirmed full expansion of all devices at the intended target. No macroscopic damage was identified at the surrounding myocardium. The renal embolic index was zero. CONCLUSIONS True-percutaneous left ventricular apex closure following large access is feasible with the self-sealing TA PLUG. The device allows for immediate haemostasis and a reliable anchoring in the acute animal setting. This is the first report of a true-percutaneous closure for large-calibre transcatheter aortic valve implantation access.
Resumo:
OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.
Resumo:
PURPOSE The ironman (IM) triathlon is a popular ultraendurance competition, consisting of 3.8 km of swimming, 180.2 km of cycling, and 42.2 km of running. The aim of this study was to investigate the predictors of IM race time, comparing echocardiographic findings, anthropometric measures, and training characteristics. METHODS Amateur IM athletes (ATHL) participating in the Zurich IM race in 2010 were included. Participants were examined the day before the race by a comprehensive echocardiographic examination. Moreover, anthropometric measurements were obtained the same day. During the 3 months before the race, each IM-ATHL maintained a detailed training diary. Recorded data were related to total IM race time. RESULTS Thirty-eight IM finishers (mean ± SD age = 38 ± 9 yr, 32 men [84%]) were evaluated. Total race time was 684 ± 89 min (mean ± SD). For right ventricular fractional area change (45% ± 7%, Spearman ρ = -0.33, P = 0.05), a weak correlation with race time was observed. Race performance exhibited stronger associations with percent body fat (15.2 ± 5.6%, ρ = 0.56, P = 0.001), speed in running training (11.7 ± 1.2 km · h(-1), ρ = -0.52, P = 0.002), and left ventricular myocardial mass index (98 ± 24 g · m(-2), ρ = -0.42, P = 0.009). The strongest association was found between race time and right ventricular end-diastolic area (22 ± 4 cm2, ρ = -0.64, P < 0.0001). In multivariate analysis, right ventricular end-diastolic area (β = -16.7, 95% confidence interval = -27.3 to -6.1, P = 0.003) and percent body fat (β = 6.8, 95% confidence interval = 1.1-12.6, P = 0.02) were independently predictive of IM race time. CONCLUSIONS In amateur IM-ATHL, RV end-diastolic area and percent body fat were independently related to race performance. RV end-diastolic area was the strongest predictor of race time. The role of the RV in endurance exercise may thus be more important than previously thought and needs to be further studied.
Resumo:
Data on short and long term efficacy and safety of d,l sotalol in patients with atrial fibrillation or atrial flutter is limited. The aims of this study were to (1) assess the antiarrhythmic efficacy of d,l sotalol maintaining normal sinus rhythm in patients with refractory atrial fibrillation or flutter, (2) evaluate the efficacy of d,l sotalol in preventing recurrences of paroxysmal atrial fibrillation or flutter, (3) evaluate the control of ventricular rate in patients with paroxysmal or refractory atrial fibrillation or flutter unsuccessfully treated with other antiarrhythmic agents, (4) determine predictors of efficacy (5) assess the safety of d,l sotalol in this setting. Two hundred patients with chronic or paroxysmal atrial fibrillation or atrial flutter or both, who had failed one to six previous antiarrhythmic drug trials were treated with d,l sotalol 80 to 440 mg/day orally. Fifty four percent was female, age 47 +/- 16 years (range 7-79), follow up period 7 +/- 7 months (range 1 to 14 months), 79% of patients had the arrhythmia for more than one year. The atrial fibrillation in 37.5% of patients was chronic and paroxysmal in 23.5. The atrial flutter was chronic in 31% of patients and paroxysmal in 8%. Eighty two percent of patients was in functional class I (NYHA) and 82% had cardiac heart disease: left atrial (LA) size 44 +/- 10 mm, right atrial (RA) size 37 +/- 7 mm and left ventricular ejection fraction (LVEF) 58 +/- 8%. Total success was achieved in 58% of patients (atrial fibrillation 40% and 18% in atrial flutter), partial success in 38% (atrial fibrillation in 18% and 20% in atrial flutter) and 4% of patients failure. It was p < 0.07 when compared total success vs partial success among atrial fibrillation and atrial flutter groups. Patients with cardiac heart disease responded worst (p = 0.10) to the drug than those without it, specially if the heart was dilated. We concluded that d,l sotalol has moderate efficacy to convert and maintain normal sinus rhythm, as well as it acts controlling paroxysmal relapses and ventricular heart rate.
Resumo:
OBJECTIVES The aim of this study was to analyze different anatomic mapping approaches for successful ablation of outflow tract tachycardia with R/S transition in lead V(3). BACKGROUND Idiopathic ventricular tachycardia can originate from different areas in the outflow tract, including the right and left ventricular endocardium, the epicardium, the pulmonary artery, and the aortic sinus of Valsalva. Although electrocardiographic criteria may be helpful in predicting the area of origin, sometimes the focus is complex to determine, especially when QRS transition in precordial leads is in V(3). METHODS We analyzed surface electrocardiograms of 33 successfully ablated patients with outflow tract tachycardia: 20 from the right ventricular outflow tract (RVOT) and 13 from different sites. The R/S transition was determined, and the different anatomic approaches needed for successful catheter ablation were studied. RESULTS Overall, R/S transition in lead V(3) was present in 19 (58%) of all patients. In these patients, mapping was started and successfully completed in the RVOT in 11 of 19 (58%) patients. The remaining eight patients with R/S transition in lead V(3) needed five additional anatomic accesses for successful ablation: from the left ventricular outflow tract (n = 3), aortic sinus of Valsalva (n = 2), coronary sinus (n = 1), the epicardium via pericardial puncture (n = 1), and the trunk of the pulmonary artery (n = 1), respectively. CONCLUSIONS A R/S transition in lead V(3) is common. In patients with outflow tract tachycardia with R/S transition in lead V(3), a stepwise endocardial and epicardial mapping through up to six anatomic approaches can lead to successful radiofrequency catheter ablation.
Resumo:
OBJECTIVES This study was conducted to determine if an additional procedural endpoint of unexcitability (UE) to pacing along the ablation line reduces recurrence of atrial fibrillation (AF) or atrial tachycardia (AT) after radiofrequency catheter ablation. BACKGROUND AF/AT recurrence is common after pulmonary vein isolation (PVI). METHODS We included 102 patients from 2 centers (age 63 ± 10 years; 33 women; left atrium 38 ± 7 mm; left ventricular ejection fraction 61 ± 6%) with symptomatic paroxysmal AF. A 3-dimensional mapping system and circumferential mapping catheter were used in all patients for PVI. In group 1 (n = 50), the procedural endpoint was bidirectional block across the ablation line. In group 2 (n = 52), additional UE to bipolar pacing at an output of 10 mA and 2-ms pulse width was required. The primary endpoint was freedom from any AF/AT (>30 s) after discontinuation of antiarrhythmic drugs. RESULTS Procedural endpoints were successfully achieved in all patients. Procedure duration was significantly longer in group 2 (185 ± 58 min vs. 139 ± 57 min; p < 0.001); however, fluoroscopy times were not different (23 ± 9 min vs. 23 ± 9 min; p = 0.49). After a follow-up of 12 months in all patients, 26 patients (52%) in group 1 versus 43 (82.7%) in group 2 were free from any AF/AT (p = 0.001) after a single procedure. No major complications occurred. CONCLUSIONS The use of pacing to ensure UE along the PVI line markedly improved near-term single-procedure success, compared with demonstration of bidirectional block alone. This additional endpoint significantly improved patient outcomes after PVI. (Unexcitability Along the Ablation as an Endpoint for Atrial Fibrillation Ablation; NCT01724437).
Resumo:
BACKGROUND: Cardiac output (CO) measurement with lithium dilution (COLD) has not been fully validated in sheep using precise ultrasonic flow probe technology (COUFP). Sheep generate important cardiovascular research models and the use of COLD has become more popular in experimental settings. METHODS: Ultrasonic transit-time perivascular flow probes were surgically implanted on the pulmonary artery of 13 sheep. Paired COLD readings were taken at six time points, before and after implantation of a left ventricular assist device (LVAD) and compared with COUFP recorded just after lithium injection. RESULTS: The mean COLD was 5.7 litre min(-1) (range 3.8-9.6 litre min(-1)) and mean COUFP 5.9 litre min(-1) (range 4.0-9.2 litre min(-1)). The bias (standard deviation) was 0.3 (1.0) litre min(-1) [5.1 (16.9)%] and limits of agreement (LOA) were -1.7 to 2.3 litre min(-1) (-28.8 to 39.0%) with a percentage error (PE) of 34.4%. Data to assess trending [rate (95% confidence intervals)] included a 78 (62-93)% concordance rate in the four-quadrant plot (n=27). In the half moon polar plot (n=19), the mean polar angle was +5°, the radial LOA were -49 to +35° and 68 (47-89)% of data points fell within 22.5° of the mean polar angle. Both tests indicated moderate to poor trending ability. CONCLUSION: COLD is not precise when evaluated against COUFP in sheep based on the statistical criteria set, but the results are comparable with previously published animal studies. KEYWORDS:
Resumo:
We appreciate the comments and concerns expressed by Arakawa and colleagues regarding our article, titled “Pulsatile control of rotary blood pumps: Does the modulation waveform matter?”1 Unfortunately, we have to disagree with Arakawa and colleagues. As is obvious from the title of our article, it investigates the effect of different waveforms on the heart–device interaction. In contrast to the authors' claim, this is the first article in the literature that uses basic waveforms (sine, triangle, saw tooth, and rectangular) with different phase shifts to examines their impact on left ventricular unloading. The previous publications2, 3 and 4 just varied the pump speed during systole and diastole, which was first reported by Bearnson and associates5 in 1996, and studied its effect on aortic pressure, coronary flow, and end-diastolic volume. We should mention that dp/dtmax is a load-sensitive parameter of contractility and not representative for the degree of unloading. Moreover, none of the aforementioned reports has studied mechanical unloading and in particular the stroke work of the left ventricle. Our method is unique because we do not just alternate between high and low speed but have accurate control of the waveform because of the direct drive system of Levitronix Technologies LLC (Waltham, Mass) and a custom-developed pump controller. Without referring, Arakawa and associates state “several previous studies have already reported the coronary flow diminishes as the left ventricular assist device support increases.” It should be noted that all the waveforms used in our study have 2000 rpm average value with 1000 rpm amplitude, which is not an excessive speed for the CentriMag rotary pump (Levitronix) to collapse the ventricle and diminish the coronary flow. We agree with Arakawa and coworkers that there is a need for a heart failure model to come to more relevant results with respect to clinical expectations. However, we have explored many existing models, including species and breeds that have a native proneness to cardiomyopathy, but all of them differ from the genetic presentation in humans. We certainly do not believe that the use of microembolization, in which the coronary circulation is impaired by the injection of microspheres, would form a good model from which to draw conclusions about coronary flow change under different loading conditions. A model would be needed in which either an infarct is created to mimic ischemic heart failure or the coronary circulation remains untouched to simulate, for instance, dilated cardiomyopathy. Furthermore, in discussion we clearly mention that “lack of heart failure is a major limitation of our study.” We also believe that unloading is not the only factor of the cardiac functional recovery, and an excessive unloading of the left ventricle might lead to cardiac tissue atrophy. Therefore, in our article we mention that control of the level of cardiac unloading by assist devices has been suggested as a mechanical tool to promote recovery, and more studies are required to find better strategies for the speed modulation of rotary pumps and to achieve an optimal heart load control to enhance myocardial recovery. Finally, there are many publications about pulsing rotary blood pumps and it was impossible to include them all. We preferred to reference some of the earlier basic works such as an original research by Bearnson and coworkers5 and another article published by our group,6 which is more relevant.
Resumo:
AIMS No standardized local thrombolysis regimen exists for the treatment of pulmonary embolism (PE). We retrospectively investigated efficacy and safety of fixed low-dose ultrasound-assisted catheter-directed thrombolysis (USAT) for intermediate- and high-risk PE. METHODS AND RESULTS Fifty-two patients (65 ± 14 years) of whom 14 had high-risk PE (troponin positive in all) and 38 intermediate-risk PE (troponin positive in 91%) were treated with intravenous unfractionated heparin and USAT using 10 mg of recombinant tissue plasminogen activator per device over the course of 15 h. Bilateral USAT was performed in 83% of patients. During 3-month follow-up, two [3.8%; 95% confidence interval (CI) 0.5-13%] patients died (one from cardiogenic shock and one from recurrent PE). Major non-fatal bleeding occurred in two (3.8%; 95% CI, 0.5-13%) patients: one intrathoracic bleeding after cardiopulmonary resuscitation requiring transfusion, one intrapulmonary bleeding requiring lobectomy. Mean pulmonary artery pressure decreased from 37 ± 9 mmHg at baseline to 25 ± 8 mmHg at 15 h (P < 0.001) and cardiac index increased from 2.0 ± 0.7 to 2.7 ± 0.9 L/min/m(2) (P < 0.001). Echocardiographic right-to-left ventricular end-diastolic dimension ratio decreased from 1.42 ± 0.21 at baseline to 1.06 ± 0.23 at 24 h (n = 21; P < 0.001). The greatest haemodynamic benefit from USAT was found in patients with high-risk PE and in those with symptom duration < 14 days. CONCLUSION A standardized catheter intervention approach using fixed low-dose USAT for the treatment of intermediate- and high-risk PE was associated with rapid improvement in haemodynamic parameters and low rates of bleeding complications and mortality.
Resumo:
Recently developed technologies allow aortic valve implantation off-pump in a beating heart. In this procedure, the native, stenotic aortic valve is not removed, but simply crushed by a pressure balloon mounted on a percutaneous catheter. Removal of the native aortic cusps before valve replacement may reduce the incidence of annular or cuspal calcium embolization and late perivalvular leaks and increase implantable valve size. However, a temporary valve system in the ascending aorta may be necessary to maintain hemodynamic stability by reducing acute aortic regurgitation and left ventricular volume overload. This study evaluates the hemodynamic effects of a wire-mounted, monoleaflet, temporary valve apparatus in a mechanical cardiovascular simulator. Aortic flow, systemic pressure and left ventricular pressure were continuously monitored. An intraluminal camera obtained real-time proximal and distal images of the valve in operation. Insertion of the parachute valve in the simulator increased diastolic pressure from 7 to 38 mm Hg. Cardiac output increased from 2.08 to 4.66 L/min and regurgitant volume decreased from 65 to 23 mL. In conclusion, placement of a temporary valve in the ascending aorta may help maintain hemodynamic stability and improve off-pump aortic valve replacement.
Resumo:
BACKGROUND In patients with acute pulmonary embolism, systemic thrombolysis improves right ventricular (RV) dilatation, is associated with major bleeding, and is withheld in many patients at risk. This multicenter randomized, controlled trial investigated whether ultrasound-assisted catheter-directed thrombolysis (USAT) is superior to anticoagulation alone in the reversal of RV dilatation in intermediate-risk patients. METHODS AND RESULTS Fifty-nine patients (63±14 years) with acute main or lower lobe pulmonary embolism and echocardiographic RV to left ventricular dimension (RV/LV) ratio ≥1.0 were randomized to receive unfractionated heparin and an USAT regimen of 10 to 20 mg recombinant tissue plasminogen activator over 15 hours (n=30; USAT group) or unfractionated heparin alone (n=29; heparin group). Primary outcome was the difference in the RV/LV ratio from baseline to 24 hours. Safety outcomes included death, major and minor bleeding, and recurrent venous thromboembolism at 90 days. In the USAT group, the mean RV/LV ratio was reduced from 1.28±0.19 at baseline to 0.99±0.17 at 24 hours (P<0.001); in the heparin group, mean RV/LV ratios were 1.20±0.14 and 1.17±0.20, respectively (P=0.31). The mean decrease in RV/LV ratio from baseline to 24 hours was 0.30±0.20 versus 0.03±0.16 (P<0.001), respectively. At 90 days, there was 1 death (in the heparin group), no major bleeding, 4 minor bleeding episodes (3 in the USAT group and 1 in the heparin group; P=0.61), and no recurrent venous thromboembolism. CONCLUSIONS In patients with pulmonary embolism at intermediate risk, a standardized USAT regimen was superior to anticoagulation with heparin alone in reversing RV dilatation at 24 hours, without an increase in bleeding complications. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01166997.
Resumo:
OBJECTIVES This study aimed to demonstrate that the presence of late gadolinium enhancement (LGE) is a predictor of death and other adverse events in patients with suspected cardiac sarcoidosis. BACKGROUND Cardiac sarcoidosis is the most important cause of patient mortality in systemic sarcoidosis, yielding a 5-year mortality rate between 25% and 66% despite immunosuppressive treatment. Other groups have shown that LGE may hold promise in predicting future adverse events in this patient group. METHODS We included 155 consecutive patients with systemic sarcoidosis who underwent cardiac magnetic resonance (CMR) for workup of suspected cardiac sarcoid involvement. The median follow-up time was 2.6 years. Primary endpoints were death, aborted sudden cardiac death, and appropriate implantable cardioverter-defibrillator (ICD) discharge. Secondary endpoints were ventricular tachycardia (VT) and nonsustained VT. RESULTS LGE was present in 39 patients (25.5%). The presence of LGE yields a Cox hazard ratio (HR) of 31.6 for death, aborted sudden cardiac death, or appropriate ICD discharge, and of 33.9 for any event. This is superior to functional or clinical parameters such as left ventricular (LV) ejection fraction (EF), LV end-diastolic volume, or presentation as heart failure, yielding HRs between 0.99 (per % increase LVEF) and 1.004 (presentation as heart failure), and between 0.94 and 1.2 for potentially lethal or other adverse events, respectively. Except for 1 patient dying from pulmonary infection, no patient without LGE died or experienced any event during follow-up, even if the LV was enlarged and the LVEF severely impaired. CONCLUSIONS Among our population of sarcoid patients with nonspecific symptoms, the presence of myocardial scar indicated by LGE was the best independent predictor of potentially lethal events, as well as other adverse events, yielding a Cox HR of 31.6 and of 33.9, respectively. These data support the necessity for future large, longitudinal follow-up studies to definitely establish LGE as an independent predictor of cardiac death in sarcoidosis, as well as to evaluate the incremental prognostic value of additional parameters.
Resumo:
BACKGROUND Trastuzumab has established efficacy against breast cancer with overexpression or amplification of the HER2 oncogene. The standard of care is 1 year of adjuvant trastuzumab, but the optimum duration of treatment is unknown. We compared 2 years of treatment with trastuzumab with 1 year of treatment, and updated the comparison of 1 year of trastuzumab versus observation at a median follow-up of 8 years, for patients enrolled in the HERceptin Adjuvant (HERA) trial. METHODS The HERA trial is an international, multicentre, randomised, open-label, phase 3 trial comparing treatment with trastuzumab for 1 and 2 years with observation after standard neoadjuvant chemotherapy, adjuvant chemotherapy, or both in 5102 patients with HER2-positive early breast cancer. The primary endpoint was disease-free survival. The comparison of 2 years versus 1 year of trastuzumab treatment involved a landmark analysis of 3105 patients who were disease-free 12 months after randomisation to one of the trastuzumab groups, and was planned after observing at least 725 disease-free survival events. The updated intention-to-treat comparison of 1 year trastuzumab treatment versus observation alone in 3399 patients at a median follow-up of 8 years (range 0-10) is also reported. This study is registered with ClinicalTrials.gov, number NCT00045032. FINDINGS We recorded 367 events of disease-free survival in 1552 patients in the 1 year group and 367 events in 1553 patients in the 2 year group (hazard ratio [HR] 0·99, 95% CI 0·85-1·14, p=0·86). Grade 3-4 adverse events and decreases in left ventricular ejection fraction during treatment were reported more frequently in the 2 year treatment group than in the 1 year group (342 [20·4%] vs 275 [16·3%] grade 3-4 adverse events, and 120 [7·2%] vs 69 [4·1%] decreases in left ventricular ejection fraction, respectively). HRs for a comparison of 1 year of trastuzumab treatment versus observation were 0·76 (95% CI 0·67-0·86, p<0·0001) for disease-free survival and 0·76 (0·65-0·88, p=0·0005) for overall survival, despite crossover of 884 (52%) patients from the observation group to trastuzumab therapy. INTERPRETATION 2 years of adjuvant trastuzumab is not more effective than is 1 year of treatment for patients with HER2-positive early breast cancer. 1 year of treatment provides a significant disease-free and overall survival benefit compared with observation and remains the standard of care. FUNDING F Hoffmann-La Roche (Roche).
Resumo:
Introduction The aim of this study was to determine which single measurement on post-mortem cardiac MR reflects actual heart weight as measured at autopsy, assess the intra- and inter-observer reliability of MR measurements, derive a formula to predict heart weight from MR measurements and test the accuracy of the formula to prospectively predict heart weight. Materials and methods 53 human cadavers underwent post-mortem cardiac MR and forensic autopsy. In Phase 1, left ventricular area and wall thickness were measured on short axis and four chamber view images of 29 cases. All measurements were correlated to heart weight at autopsy using linear regression analysis. In Phase 2, single left ventricular area measurements on four chamber view images (LVA_4C) from 24 cases were used to predict heart weight at autopsy based on equations derived during Phase 1. Intra-class correlation coefficient (ICC) was used to determine inter- and intra-reader agreement. Results Heart weight strongly correlates with LVA_4C (r=0.78 M; p<0.001). Intra-reader and inter-reader reliability was excellent for LVA_4C (ICC=0.81–0.91; p<0.001 and ICC=0.90; p<0.001 respectively). A simplified formula for heart weight ([g]≈LVA_4C [mm2]×0.11) was derived based on linear regression analysis. Conclusions This study shows that single circumferential area measurements of the left ventricle in the four chamber view on post-mortem cardiac MR reflect actual heart weight as measured at autopsy. These measurements yield an excellent intra- and inter-reader reliability and can be used to predict heart weight prior to autopsy or to give a reasonable estimate of heart weight in cases where autopsy is not performed.