156 resultados para Kerstin Ekman
Resumo:
Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
Resumo:
Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.
Resumo:
The European Mediterranean region is governed by a characteristic climate of summer drought that is likely to increase in duration and intensity under predicted climate change. However, large-scale network analyses investigating spatial aspects of pre-instrumental drought variability for this biogeographic zone are still scarce. In this study we introduce 54 mid- to high-elevation tree-ring width (TRW) chronologies comprising 2186 individual series from pine trees (Pinus spp.). This compilation spans a 4000-km east–west transect from Spain to Turkey, and was subjected to quality control and standardization prior to the development of site chronologies. A principal component analysis (PCA) was applied to identify spatial growth patterns during the network's common period 1862–1976, and new composite TRW chronologies were developed and investigated. The PCA reveals a common variance of 19.7% over the 54 Mediterranean pine chronologies. More interestingly, a dipole pattern in growth variability is found between the western (15% explained variance) and eastern (9.6%) sites, persisting back to 1330 AD. Pine growth on the Iberian Peninsula and Italy favours warm early growing seasons, but summer drought is most critical for ring width formation in the eastern Mediterranean region. Synoptic climate dynamics that have been in operation for the last seven centuries have been identified as the driving mechanism of a distinct east–west dipole in the growth variability of Mediterranean pines.
Genome-Wide Analyses Suggest Mechanisms Involving Early B-Cell Development in Canine IgA Deficiency.
Resumo:
Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.
Resumo:
Mexican and Peruvian hairless dogs and Chinese crested dogs are characterized by missing hair and teeth, a phenotype termed canine ectodermal dysplasia (CED). CED is inherited as a monogenic autosomal semidominant trait. With genomewide association analysis we mapped the CED mutation to a 102-kilo-base pair interval on chromosome 17. The associated interval contains a previously uncharacterized member of the forkhead box transcription factor family (FOXI3), which is specifically expressed in developing hair and teeth. Mutation analysis revealed a frameshift mutation within the FOXI3 coding sequence in hairless dogs. Thus, we have identified FOXI3 as a regulator of ectodermal development.
Resumo:
The physical processes controlling the mixed layer salinity (MLS) seasonal budget in the tropical Atlantic Ocean are investigated using a regional configuration of an ocean general circulation model. The analysis reveals that the MLS cycle is generally weak in comparison of individual physical processes entering in the budget because of strong compensation. In evaporative regions, around the surface salinity maxima, the ocean acts to freshen the mixed layer against the action of evaporation. Poleward of the southern SSS maxima, the freshening is ensured by geostrophic advection, the vertical salinity diffusion and, during winter, a dominant contribution of the convective entrainment. On the equatorward flanks of the SSS maxima, Ekman transport mainly contributes to supply freshwater from ITCZ regions while vertical salinity diffusion adds on the effect of evaporation. All these terms are phase locked through the effect of the wind. Under the seasonal march of the ITCZ and in coastal areas affected by river (7°S:15°N), the upper ocean freshening by precipitations and/or runoff is attenuated by vertical salinity diffusion. In the eastern equatorial regions, seasonal cycle of wind forced surface currents advect freshwaters, which are mixed with subsurface saline water because of the strong vertical turbulent diffusion. In all these regions, the vertical diffusion presents an important contribution to the MLS budget by providing, in general, an upwelling flux of salinity. It is generally due to vertical salinity gradient and mixing due to winds. Furthermore, in the equator where the vertical shear, associated to surface horizontal currents, is developed, the diffusion depends also on the sheared flow stability.
Resumo:
Leopard Complex spotting occurs in several breeds of horses and is caused by an incompletely dominant allele (LP). Homozygosity for LP is also associated with congenital stationary night blindness (CSNB) in Appaloosa horses. Previously, LP was mapped to a 6 cm region on ECA1 containing the candidate gene TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) and decreased expression of this gene, measured by qRT-PCR, was identified as the likely cause of both spotting and ocular phenotypes. This study describes investigations for a mutation causing or associated with the Leopard Complex and CSNB phenotype in horses. Re-sequencing of the gene and associated splice sites within the 105 624 bp genomic region of TRPM1 led to the discovery of 18 SNPs. Most of the SNPs did not have a predictive value for the presence of LP. However, one SNP (ECA1:108,249,293 C>T) found within intron 11 had a strong (P < 0.0005), but not complete, association with LP and CSNB and thus is a good marker but unlikely to be causative. To further localize the association, 70 SNPs spanning over two Mb including the TRPM1 gene were genotyped in 192 horses from three different breeds segregating for LP. A single 173 kb haplotype associated with LP and CSNB (ECA1: 108,197,355- 108,370,150) was identified. Illumina sequencing of 300 kb surrounding this haplotype revealed 57 SNP variants. Based on their localization within expressed sequences or regions of high sequence conservation across mammals, six of these SNPs were considered to be the most likely candidate mutations. While the precise function of TRPM1 remains to be elucidated, this work solidifies its functional role in both pigmentation and night vision. Further, this work has identified several potential regulatory elements of the TRPM1 gene that should be investigated further in this and other species.
Resumo:
Hypothyroidism is a complex clinical condition found in both humans and dogs, thought to be caused by a combination of genetic and environmental factors. In this study we present a multi-breed analysis of predisposing genetic risk factors for hypothyroidism in dogs using three high-risk breeds-the Gordon Setter, Hovawart and the Rhodesian Ridgeback. Using a genome-wide association approach and meta-analysis, we identified a major hypothyroidism risk locus shared by these breeds on chromosome 12 (p = 2.1x10-11). Further characterisation of the candidate region revealed a shared ~167 kb risk haplotype (4,915,018-5,081,823 bp), tagged by two SNPs in almost complete linkage disequilibrium. This breed-shared risk haplotype includes three genes (LHFPL5, SRPK1 and SLC26A8) and does not extend to the dog leukocyte antigen (DLA) class II gene cluster located in the vicinity. These three genes have not been identified as candidate genes for hypothyroid disease previously, but have functions that could potentially contribute to the development of the disease. Our results implicate the potential involvement of novel genes and pathways for the development of canine hypothyroidism, raising new possibilities for screening, breeding programmes and treatments in dogs. This study may also contribute to our understanding of the genetic etiology of human hypothyroid disease, which is one of the most common endocrine disorders in humans.
Resumo:
Clinical, pathological and genetic examination revealed an as yet uncharacterized juvenile-onset neuroaxonal dystrophy (NAD) in Spanish water dogs. Affected dogs presented with various neurological deficits including gait abnormalities and behavioral deficits. Histopathology demonstrated spheroid formation accentuated in the grey matter of the cerebral hemispheres, the cerebellum, the brain stem and in the sensory pathways of the spinal cord. Iron accumulation was absent. Ultrastructurally spheroids contained predominantly closely packed vesicles with a double-layered membrane, which were characterized as autophagosomes using immunohistochemistry. The family history of the four affected dogs suggested an autosomal recessive inheritance. SNP genotyping showed a single genomic region of extended homozygosity of 4.5 Mb in the four cases on CFA 8. Linkage analysis revealed a maximal parametric LOD score of 2.5 at this region. By whole genome re-sequencing of one affected dog, a perfectly associated, single, non-synonymous coding variant in the canine tectonin beta-propeller repeat-containing protein 2 (TECPR2) gene affecting a highly conserved region was detected (c.4009C>T or p.R1337W). This canine NAD form displays etiologic parallels to an inherited TECPR2 associated type of human hereditary spastic paraparesis (HSP). In contrast to the canine NAD, the spinal cord lesions in most types of human HSP involve the sensory and the motor pathways. Furthermore, the canine NAD form reveals similarities to cases of human NAD defined by widespread spheroid formation without iron accumulation in the basal ganglia. Thus TECPR2 should also be considered as candidate gene for human NAD. Immunohistochemistry and the ultrastructural findings further support the assumption, that TECPR2 regulates autophagosome accumulation in the autophagic pathways. Consequently, this report provides the first genetic characterization of juvenile canine NAD, describes the histopathological features associated with the TECPR2 mutation and provides evidence to emphasize the association between failure of autophagy and neurodegeneration.
Resumo:
BACKGROUND Delayed-onset muscle soreness (DOMS) is a common symptom in people participating in exercise, sport, or recreational physical activities. Several remedies have been proposed to prevent and alleviate DOMS. DESIGN AND METHODS A five-arm randomized controlled study was conducted to examine the effects of acupuncture on eccentric exercise-induced DOMS of the biceps brachii muscle. Participants were recruited through convenience sampling of students and general public. Participants were randomly allocated to needle, laser, sham needle, sham laser acupuncture, and no intervention. Outcome measures included pressure pain threshold (PPT), pain intensity (visual analog scale), and maximum isometric voluntary force. RESULTS Delayed-onset muscle soreness was induced in 60 participants (22 females, age 23.6 ± 2.8 years, weight 66.1 ± 9.6 kg, and height 171.6 ± 7.9 cm). Neither verum nor sham interventions significantly improved outcomes within 72 hours when compared with no treatment control (P > 0.05). CONCLUSIONS Acupuncture was not effective in the treatment of DOMS. From a mechanistic point of view, these results have implications for further studies: (1) considering the high-threshold mechanosensitive nociceptors of the muscle, the cutoff for PPT (5 kg/cm) chosen to avoid bruising might have led to ceiling effects; (2) the traditional acupuncture regimen, targeting muscle pain, might have been inappropriate as the DOMS mechanisms seem limited to the muscular unit and its innervation. Therefore, a regionally based regimen including an intensified intramuscular needling (dry needling) should be tested in future studies, using a higher cutoff for PPT to avoid ceiling effects.
Resumo:
Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10-20 cases and 10-20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted re-sequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrl änder dogs. To our knowledge, this is the first time this family trio WGS-approach, has successfully been used to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrl änder dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G>C (p.R52P) was found to be concordant in eight additional cases and 16 healthy Kromfohrl änder dogs.
The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.
Resumo:
Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.
Resumo:
Footrot is a widespread problem in Swiss sheep farming. The objectives of this study were to determine whether flocks which were clinically free from footrot carry virulent strains of Dichelobacter nodosus, and to describe the infection dynamics for flocks and individual sheep. To this purpose, a new PCR-diagnostic tool was used, which is able to distinguish benign from virulent D. nodosus. Nine farms were examined three times at intervals of 6 months. Cotton swabs were used to collect samples from the interdigital skin to analyze for the presence of virulent and benign strains of D. nodosus. Additionally, epidemiological data of the farms were collected with the aid of a standardized questionnaire. On four farms, benign strains were diagnosed at each visit; in one farm, benign strains were detected once only. Two flocks revealed sheep infected with virulent D. nodosus throughout the study but without clinical evidence of footrot. In two flocks, the virulent strains of D. nodosus were introduced into the flock during the study period. In one farm, clinical symptoms of virulent footrot were evident only two weeks after the positive finding by PCR. Only individual sheep with previously negative status, but none with previously benign status became infected with virulent strains during the study. The newly developed competitive RT PCR proved to be more sensitive than clinical diagnosis for detecting footrot infection in herds, as it unequivocally classified the four flocks as infected with virulent D. nodosus, even though they did not show clinical signs at the times of sampling. This early detection may be crucial to the success of any control program. Both new infections with virulent strains could be explained by contact with sheep from herds with virulent D. nodosus as evaluated from the questionnaires. These results show that the within-herd eradication of footrot becomes possible using the competitive PCR assay to specifically diagnose virulent D. nodosus.