164 resultados para Hematopoietic stem cells transplantation
Resumo:
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. METHODS IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. RESULTS iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and alpha-smooth muscle actin (alpha-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. CONCLUSION iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis.
Support of hepatic regeneration by trophic factors from liver-derived mesenchymal stromal/stem cells
Resumo:
Mesenchymal stromal/stem cells (MSCs) have multilineage differentiation potential and as such are known to promote regeneration in response to tissue injury. However, accumulating evidence indicates that the regenerative capacity of MSCs is not via transdifferentiation but mediated by their production of trophic and other factors that promote endogenous regeneration pathways of the tissue cells. In this chapter, we provide a detailed description on how to obtain trophic factors secreted by cultured MSCs and how they can be used in small animal models. More specific, in vivo models to study the paracrine effects of MSCs on regeneration of the liver after surgical resection and/or ischemia and reperfusion injury are described.
Resumo:
In chronic lymphocytic leukemia (CLL) medical progress is driven by clinical studies with relapse-free survival (RFS) as the primary endpoint. The randomized EBMT-Intergroup trial compared high-dose therapy and autologous stem cell transplantation (ASCT) to observation and demonstrated a substantial improvement of RFS without showing improved overall survival for the transplant arm. Here we report quality of life (QoL) information of the first 3 years following randomization from that study. The main objective was to assess the impact of treatment on QoL over time. Two secondary analyses were performed to further investigate the impact of ASCT and relapse on QoL. In the primary analysis, we demonstrate an adverse impact of ASCT on QoL which was largest at 4 months and continued throughout the first year after randomization. Further, we demonstrated a sustained adverse impact of relapse on QoL which worsened over time. Despite better disease control by ASCT the side effects thus turned the net effect towards inferior QoL in the first year and comparable QoL in the following 2 years after randomization. This study emphasizes the importance of information concerning QoL impacts when patients are counseled about treatments aimed at improving RFS in the absence of a survival benefit.
Resumo:
Early relapse is common in patients with mantle cell lymphoma (MCL) highlighting the unmet need for further improvement of therapeutic options for these patients. CD20 inhibition combined with induction chemotherapy as well as consolidation with high-dose chemotherapy (HDCT) is increasingly considered cornerstones within current therapy algorithms of MCL whereas the role of radioimmunotherapy is unclear. This retrospective single center study compared 46 consecutive MCL patients receiving HDCT in first or second remission. Thirty-five patients had rituximab and BEAM (R-BEAM), and 11 patients received ibritumomab tiuxetan (Zevalin®), an Yttrium-90 labeled CD20 targeting antibody, prior to BEAM (Z-BEAM) followed by autologous stem cell transplantation (ASCT). We observed that the 5-year overall survival (OS) in the R-BEAM and Z-BEAM groups was 55% and 71% (p = 0.288), and the 4-year progression free survival (PFS) was 32% and 41%, respectively (p = 0.300). There were no treatment related deaths in both groups, and we observed no differences in toxicities, infection rates or engraftment. Our data suggest that the Z-BEAM conditioning regimen followed by ASCT is well tolerated, but was not associated with significantly improved survival compared to R-BEAM. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The goal of this study was to assess the in vitro differentiation capacity of human bone marrow-derived stem cells (hBMSCs) along retinal lineages. Mononuclear cells (MNC) were isolated from bone marrow (BM) and mobilized peripheral blood (mPB) using Ficoll-Paque density gradient centrifugation, and were sorted by magnetic-activated cell sorting (MACS) for specific stem cell subsets (CD34(+)CD38(+)/CD34(+)CD38(-)). These cells were then co-cultured on human retinal pigment epithelial cells (hRPE) for 7 days. The expression of stem cell, neural and retina-specific markers was examined by immunostaining, and the gene expression profiles were assessed after FACS separation of the co-cultured hBMSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, in vitro functionality of the differentiated cells was analyzed by quantifying phagocytosis of CY5-labeled photoreceptor outer segments (POS). After 7 days of co-culture, hBMSCs adopted an elongated epithelial-like morphology and expressed RPE-specific markers, such as RPE65 and bestrophin. In addition, these differentiated cells were able to phagocytose OS, one of the main characteristics of native RPE cells. Our data demonstrated that human CD34(+)CD38(-) hBMSC may differentiate towards an RPE-like cell type in vitro and could become a new type of autologous donor cell for regenerative therapy in retinal degenerative diseases.
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BMMSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJMSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Resumo:
Background: The differentiation of ADSC is regulated by many factors, including oxygen tensions. Evidences have suggested that low oxygen tension or hypoxia is involved in the osteogenic, adipogenic differentiations of MSCs. Expansion and induction of ADSCs under hypoxia generally result in enhanced osteogenic, differentiation. Therefore, we analyzed bovine ADSC differentiations in Normoxia and hypoxia conditions Methodology: Recently (<8h) cow tail from a slaughterhouse, take out some fat from the tail and fat cells was isolated by using for isolation of ADSC protocol, the expansion cells were put into osteogenic and adipogenic medium for 3 weeks in hypoxia and normoxia conditions separately and characterized by Von kossa, Alizarin red and Oil red O staining and further by using real-time PCR by using primers of osteocalcin, Collagen type1, cbfa1/runx2, ALP, ostepontin, osteonectin, BMP2, BMP24, BMP27, noggin, gremlin, Nestin and HIF1A,VEGFA,PPARG,Leptin. Results: Our experiment results show hypoxia promotes osteogenesis but suppresses adipogenesis.
Resumo:
BACKGROUND Lymphedema is an underdiagnosed pathology which in industrialized countries mainly affects cancer patients that underwent lymph node dissection and/or radiation. Currently no effective therapy is available so that patients' life quality is compromised by swellings of the concerned body region. This unfortunate condition is associated with body imbalance and subsequent osteochondral deformations and impaired function as well as with an increased risk of potentially life threatening soft tissue infections. METHODS The effects of PRP and ASC on angiogenesis (anti-CD31 staining), microcirculation (Laser Doppler Imaging), lymphangiogenesis (anti-LYVE1 staining), microvascular architecture (corrosion casting) and wound healing (digital planimetry) are studied in a murine tail lymphedema model. RESULTS Wounds treated by PRP and ASC healed faster and showed a significantly increased epithelialization mainly from the proximal wound margin. The application of PRP induced a significantly increased lymphangiogenesis while the application of ASC did not induce any significant change in this regard. CONCLUSIONS PRP and ASC affect lymphangiogenesis and lymphedema development and might represent a promising approach to improve regeneration of lymphatic vessels, restore disrupted lymphatic circulation and treat or prevent lymphedema alone or in combination with currently available lymphedema therapies.
Resumo:
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Resumo:
BACKGROUND Acute myeloid leukaemia mainly affects elderly people, with a median age at diagnosis of around 70 years. Although about 50-60% of patients enter first complete remission upon intensive induction chemotherapy, relapse remains high and overall outcomes are disappointing. Therefore, effective post-remission therapy is urgently needed. Although often no post-remission therapy is given to elderly patients, it might include chemotherapy or allogeneic haemopoietic stem cell transplantation (HSCT) following reduced-intensity conditioning. We aimed to assess the comparative value of allogeneic HSCT with other approaches, including no post-remission therapy, in patients with acute myeloid leukaemia aged 60 years and older. METHODS For this time-dependent analysis, we used the results from four successive prospective HOVON-SAKK acute myeloid leukaemia trials. Between May 3, 2001, and Feb 5, 2010, a total of 1155 patients aged 60 years and older were entered into these trials, of whom 640 obtained a first complete remission after induction chemotherapy and were included in the analysis. Post-remission therapy consisted of allogeneic HSCT following reduced-intensity conditioning (n=97), gemtuzumab ozogamicin (n=110), chemotherapy (n=44), autologous HSCT (n=23), or no further treatment (n=366). Reduced-intensity conditioning regimens consisted of fludarabine combined with 2 Gy of total body irradiation (n=71), fludarabine with busulfan (n=10), or other regimens (n=16). A time-dependent analysis was done, in which allogeneic HSCT was compared with other types of post-remission therapy. The primary endpoint of the study was 5-year overall survival for all treatment groups, analysed by a time-dependent analysis. FINDINGS 5-year overall survival was 35% (95% CI 25-44) for patients who received an allogeneic HSCT, 21% (17-26) for those who received no additional post-remission therapy, and 26% (19-33) for patients who received either additional chemotherapy or autologous HSCT. Overall survival at 5 years was strongly affected by the European LeukemiaNET acute myeloid leukaemia risk score, with patients in the favourable risk group (n=65) having better 5-year overall survival (56% [95% CI 43-67]) than those with intermediate-risk (n=131; 23% [19-27]) or adverse-risk (n=444; 13% [8-20]) acute myeloid leukaemia. Multivariable analysis with allogeneic HSCT as a time-dependent variable showed that allogeneic HSCT was associated with better 5-year overall survival (HR 0·71 [95% CI 0·53-0·95], p=0·017) compared with non-allogeneic HSCT post-remission therapies or no post-remission therapy, especially in patients with intermediate-risk (0·82 [0·58-1·15]) or adverse-risk (0.39 [0·21-0·73]) acute myeloid leukaemia. INTERPRETATION Collectively, the results from these four trials suggest that allogeneic HSCT might be the preferred treatment approach in patients 60 years of age and older with intermediate-risk and adverse-risk acute myeloid leukaemia in first complete remission, but the comparative value should ideally be shown in a prospective randomised study. FUNDING None.
Resumo:
Novel strategies aiming to increase survival rates in patients with advanced-stage mantle cell lymphoma (MCL) and relapsing diffuse large B-cell lymphoma (DLBCL) are a clinical need. High-dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) has improved progression-free (PFS) and overall survival (OS) in MCL and relapsed DLBCL. However, the role of CD34+ cell selection before ASCT in MCL and DLBCL is unclear. We retrospectively analyzed the outcome of 62 consecutive patients with advanced-stage MCL or relapsed DLBCL undergoing ASCT with (n=31) or without (n=31) prior CD34+ selection. All patients had stage III or IV disease, with 47% having DLBCL and 53% MCL. The median duration for neutrophil and platelet recovery was 12 and 16 days in CD34+ selected patients, and 11 (P<.001) and 14 days (P=.012) in the group without selection, respectively. No differences in toxicities were observed. The 5-year PFS for CD34+ selected versus not selected patients was 67% and 39% (P=.016), and the 5-year OS was 86% and 54% (P=.007). Our data suggest that using CD34+ selected autografts for ASCT in advanced stage MCL and DLBCL is associated with longer PFS and OS without increased toxicity.
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.