25 resultados para signal processing algorithms
Resumo:
Users of cochlear implant systems, that is, of auditory aids which stimulate the auditory nerve at the cochlea electrically, often complain about poor speech understanding in noisy environments. Despite the proven advantages of multimicrophone directional noise reduction systems for conventional hearing aids, only one major manufacturer has so far implemented such a system in a product, presumably because of the added power consumption and size. We present a physically small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. Supporting algorithms, which allow the adjustment of the opening angle and the maximum noise suppression, are proposed and evaluated. A portable real-time device for test in real acoustic environments is presented.
Resumo:
OBJECTIVES To establish whether complex signal processing is beneficial for users of bone anchored hearing aids. METHODS Review and analysis of two studies from our own group, each comparing a speech processor with basic digital signal processing (either Baha Divino or Baha Intenso) and a processor with complex digital signal processing (either Baha BP100 or Baha BP110 power). The main differences between basic and complex signal processing are the number of audiologist accessible frequency channels and the availability and complexity of the directional multi-microphone noise reduction and loudness compression systems. RESULTS Both studies show a small, statistically non-significant improvement of speech understanding in quiet with the complex digital signal processing. The average improvement for speech in noise is +0.9 dB, if speech and noise are emitted both from the front of the listener. If noise is emitted from the rear and speech from the front of the listener, the advantage of the devices with complex digital signal processing as opposed to those with basic signal processing increases, on average, to +3.2 dB (range +2.3 … +5.1 dB, p ≤ 0.0032). DISCUSSION Complex digital signal processing does indeed improve speech understanding, especially in noise coming from the rear. This finding has been supported by another study, which has been published recently by a different research group. CONCLUSIONS When compared to basic digital signal processing, complex digital signal processing can increase speech understanding of users of bone anchored hearing aids. The benefit is most significant for speech understanding in noise.
Resumo:
We report on a comprehensive signal processing procedure for very low signal levels for the measurement of neutral deuterium in the local interstellar medium from a spacecraft in Earth orbit. The deuterium measurements were performed with the IBEX-Lo camera on NASA’s Interstellar Boundary Explorer (IBEX) satellite. Our analysis technique for these data consists of creating a mass relation in three-dimensional time of flight space to accurately determine the position of the predicted D events, to precisely model the tail of the H events in the region where the H tail events are near the expected D events, and then to separate the H tail from the observations to extract the very faint D signal. This interstellar D signal, which is expected to be a few counts per year, is extracted from a strong terrestrial background signal, consisting of sputter products from the sensor’s conversion surface. As reference we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. During the three years of the mission time when the deuterium signal was visible to IBEX, the observation geometry and orbit allowed for a total observation time of 115.3 days. Because of the spinning of the spacecraft and the stepping through eight energy channels the actual observing time of the interstellar wind was only 1.44 days. With the optimised data analysis we found three counts that could be attributed to interstellar deuterium. These results update our earlier work.
Resumo:
Clock synchronization is critical for the operation of a distributed wireless network system. In this paper we investigate on a method able to evaluate in real time the synchronization offset between devices down to nanoseconds (as needed for positioning). The method is inspired by signal processing algorithms and relies on fine-grain time information obtained during the reconstruction of the signal at the receiver. Applying the method to a GPS-synchronized system show that GPS-based synchronization has high accuracy potential but still suffers from short-term clock drift, which limits the achievable localization error.
Resumo:
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.
Resumo:
The task considered in this paper is performance evaluation of region segmentation algorithms in the ground-truth-based paradigm. Given a machine segmentation and a ground-truth segmentation, performance measures are needed. We propose to consider the image segmentation problem as one of data clustering and, as a consequence, to use measures for comparing clusterings developed in statistics and machine learning. By doing so, we obtain a variety of performance measures which have not been used before in image processing. In particular, some of these measures have the highly desired property of being a metric. Experimental results are reported on both synthetic and real data to validate the measures and compare them with others.
Resumo:
Electroencephalograms (EEG) are often contaminated with high amplitude artifacts limiting the usability of data. Methods that reduce these artifacts are often restricted to certain types of artifacts, require manual interaction or large training data sets. Within this paper we introduce a novel method, which is able to eliminate many different types of artifacts without manual intervention. The algorithm first decomposes the signal into different sub-band signals in order to isolate different types of artifacts into specific frequency bands. After signal decomposition with principal component analysis (PCA) an adaptive threshold is applied to eliminate components with high variance corresponding to the dominant artifact activity. Our results show that the algorithm is able to significantly reduce artifacts while preserving the EEG activity. Parameters for the algorithm do not have to be identified for every patient individually making the method a good candidate for preprocessing in automatic seizure detection and prediction algorithms.
Resumo:
Time-based localization techniques such as multilateration are favoured for positioning to wide-band signals. Applying the same techniques with narrow-band signals such as GSM is not so trivial. The process is challenged by the needs of synchronization accuracy and timestamp resolution both in the nanoseconds range. We propose approaches to deal with both challenges. On the one hand, we introduce a method to eliminate the negative effect of synchronization offset on time measurements. On the other hand, we propose timestamps with nanoseconds accuracy by using timing information from the signal processing chain. For a set of experiments, ranging from sub-urban to indoor environments, we show that our proposed approaches are able to improve the localization accuracy of TDOA approaches by several factors. We are even able to demonstrate errors as small as 10 meters for outdoor settings with narrow-band signals.
Resumo:
BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.
Resumo:
Reflected at any level of organization of the central nervous system, most of the processes ranging from ion channels to neuronal networks occur in a closed loop, where the input to the system depends on its output. In contrast, most in vitro preparations and experimental protocols operate autonomously, and do not depend on the output of the studied system. Thanks to the progress in digital signal processing and real-time computing, it is now possible to artificially close the loop and investigate biophysical processes and mechanisms under increased realism. In this contribution, we review some of the most relevant examples of a new trend in in vitro electrophysiology, ranging from the use of dynamic-clamp to multi-electrode distributed feedback stimulation. We are convinced these represents the beginning of new frontiers for the in vitro investigation of the brain, promising to open the still existing borders between theoretical and experimental approaches while taking advantage of cutting edge technologies.
Resumo:
Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signal to noise ratio for rooms with realistic reverberation and more than 18 dB under anechoic conditions. Speech understanding in noise is measured in 6 adult cochlear implant users in a reverberant room, showing average improvements of 7.9–9.6 dB, when compared to a single omnidirectional microphone or 1.3–5.6 dB, when compared to a simple directional two-microphone device. Subjective evaluation in a cafeteria at lunchtime shows a preference of the cochlear implant users for the evaluated device in terms of speech understanding and sound quality.