17 resultados para mtDNA ND4
Resumo:
Aim The strawberry poison frog, Oophaga pumilio, has undergone a remarkable radiation of colour morphs in the Bocas del Toro archipelago in Panama. This species shows extreme variation in colour and pattern between populations that have been geographically isolated for < 10,000 years. While previous research has suggested the involvement of divergent selection, to date no quantitative test has examined this hypothesis. Location Bocas del Toro archipelago, Panama. Methods We use a combination of population genetics, phylogeography and phenotypic analyses to test for divergent selection in coloration in O. pumilio. Tissue samples of 88 individuals from 15 distinct populations were collected. Using these data, we developed a gene tree using the mitochondrial DNA (mtDNA) d-loop region. Using parameters derived from our mtDNA phylogeny, we predicted the coalescence of a hypothetical nuclear gene underlying coloration. We collected spectral reflectance and body size measurements on 94 individuals from four of the populations and performed a quantitative analysis of phenotypic divergence. Results The mtDNA d-loop tree revealed considerable polyphyly across populations. Coalescent reconstructions of gene trees within population trees revealed incomplete genotypic sorting among populations. The quantitative analysis of phenotypic divergence revealed complete lineage sorting by colour, but not by body size: populations showed non-overlapping variation in spectral reflectance measures of body coloration, while variation in body size did not separate populations. Simulations of the coalescent using parameter values derived from our empirical analyses demonstrated that the level of sorting among populations seen in colour cannot reasonably be attributed to drift. Main conclusions These results imply that divergence in colour, but not body size, is occurring at a faster rate than expected under neutral processes. Our study provides the first quantitative support for the claim that strong diversifying selection underlies colour variation in the strawberry poison frog.
Resumo:
Background DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes. Methods mtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE. Results We characterise a novel splice site mutation in POLG found in trans with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities. Conclusions mtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore, POLG analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.
Resumo:
The potential for mitochondrial (mt) DNA mutation accumulation during antiretroviral therapy (ART), and preferential accumulation in patients with lipoatrophy compared with control participants, remains controversial. We sequenced the entire mitochondrial genome, both before ART and after ART exposure, in 29 human immunodeficiency virus (HIV)-infected Swiss HIV Cohort Study participants initiating a first-line thymidine analogue-containing ART regimen. No accumulation of mtDNA mutations or deletions was detected in 13 participants who developed lipoatrophy or in 16 control participants after significant and comparable ART exposure (median duration, 3.3 and 3.7 years, respectively). In HIV-infected persons, the development of lipoatrophy is unlikely to be associated with accumulation of mtDNA mutations detectable in peripheral blood.
Resumo:
Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.
Resumo:
We analysed a 610-bp mitochondrial (mt)DNA D-loop fragment in a sample of German draught horse breeds and compared the polymorphic sites with sequences from Arabian, Hanoverian, Exmoor, Icelandic, Sorraia and Przewalski's Horses as well as with Suffolk, Shire and Belgian horses. In a total of 65 horses, 70 polymorphic sites representing 47 haplotypes were observed. The average percentage of polymorphic sites was 11.5% for the mtDNA fragment analysed. In the nine different draught horse breeds including South German, Mecklenburg, Saxon Thuringa coldblood, Rhenisch German, Schleswig Draught Horse, Black Forest Horse, Shire, Suffolk and Belgian, 61 polymorphic sites and 24 haplotypes were found. The phylogenetic analysis failed to show monophyletic groups for the draught horses. The analysis indicated that the draught horse populations investigated consist of diverse genetic groups with respect to their maternal lineage.
Resumo:
An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.
Resumo:
It is generally difficult to establish a timeline for the appearance of different technologies and tools during human cultural evolution. Here I use stochastic character mapping of discrete traits using human mtDNA phylogenies rooted to the Reconstructed Sapiens Reference Sequence (RSRS) as a model to address this question. The analysis reveals that the ancestral state of Homo sapiens was hunting, using material innovations that included bows and arrows, stone axes and spears. However, around 80,000 y before present, a transition occurred, from this ancestral hunting tradition, toward the invention of protective weapons such as shields, the appearance of ritual fighting as a socially accepted behavior and the construction of war canoes for the fast transport of large numbers of warriors. This model suggests a major cultural change, during the Palaeolithic, from hunters to warriors. Moreover, in the light of the recent Out of Africa Theory, it suggests that the “Out of Africa Tribe” was a tribe of warriors that had developed protective weapons such as shields and used big war canoes to travel the sea coast and big rivers in raiding expeditions.
Resumo:
The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.
Resumo:
The northern region of the Indian subcontinent is a vast landscape interlaced by diverse ecologies, e.g. the Gangetic plain and the Himalayas. A great number of ethnic groups are found there, displayed as a multitude of languages and cultures. The Tharu represent one of the largest and linguistically most diversified such groups, scattered across the Tarai region of Nepal and bordering Indian states. Their origins are uncertain. Hypotheses have been advanced about an Austroasiatic affinity, Tibeto-Burman origins, as well as aboriginal roots in the Tarai. Several Tharu groups speak a variety of Indo-Aryan languages, but have traditionally been described by ethnographers as representing an East Asian phenotype. Their ancestry and intra-population diversity had previously been tested only for haploid (mtDNA and Y-chromosome) markers in a small portion of the population. This study presents the first systematic genetic survey of the Tharu from both Nepal and the Indian states of Uttaranchal and Uttar Pradesh, using genome-wide SNPs and haploid (mtDNA and Y-chromosome) markers. The results suggest that the 'ethnic' construct of Tharu is likely to have lain in the Tarai region, with a reconstructible radiation to Uttaranchal and Uttar Pradesh. Despite extensive admixture with other local communities, Tharu sub-populations preserve strong genetic signatures that indicate a common ancestry.
Resumo:
Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria–Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre–date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria–Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans–species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms.
Resumo:
Reactive oxygen species (ROS) have been implemented in the etiology of pulmonary fibrosis (PF) in systemic sclerosis. In the bleomycin model, we evaluated the role of acquired mutations in mitochondrial DNA (mtDNA) and respiratory chain defects as a trigger of ROS formation and fibrogenesis. Adult male Wistar rats received a single intratracheal instillation of bleomycin and their lungs were examined at different time points. Ashcroft scores, collagen and TGFβ1 levels documented a delayed onset of PF by day 14. In contrast, increased malon dialdehyde as a marker of ROS formation was detectable as early as 24 hours after bleomycin instillation and continued to increase. At day 7, lung tissue acquired significant amounts of mtDNA deletions, translating into a significant dysfunction of mtDNA-encoded, but not nucleus-encoded respiratory chain subunits. mtDNA deletions and markers of mtDNA-encoded respiratory chain dysfunction significantly correlated with pulmonary TGFβ1 concentrations and predicted PF in a multivariate model.
Resumo:
Aim We used combined palaeobotanical and genetic data to assess whether Norway spruce (Picea abies) and Siberian spruce (Picea obovata), two major components of the Eurasian boreal forests, occupied separate glacial refugia, and to test previous hypotheses on their distinction, geographical delimitation and introgression. Location The range of Norway spruce in northern Europe and Siberian spruce in northern Asia. Methods Pollen data and recently compiled macrofossil records were summarized for the Last Glacial Maximum (LGM), late glacial and Holocene. Genetic variation was assessed in 50 populations using one maternally (mitochondrial nad1) and one paternally (chloroplast trnT–trnL) inherited marker and analysed using spatial analyses of molecular variance (SAMOVA). Results Macrofossils showed that spruce was present in both northern Europe and Siberia at the LGM. Congruent macrofossil and pollen data from the late glacial suggested widespread expansions of spruce in the East European Plain, West Siberian Plain, southern Siberian mountains and the Baikal region. Colonization was largely completed during the early Holocene, except in the formerly glaciated area of northern Europe. Both DNA markers distinguished two highly differentiated groups that correspond to Norway spruce and Siberian spruce and coincide spatially with separate LGM spruce occurrences. The division of the mtDNA variation was geographically well defined and occurred to the east of the Ural Mountains along the Ob River, whereas the cpDNA variation showed widespread admixture. Genetic diversity of both DNA markers was higher in western than in eastern populations. Main conclusions North Eurasian Norway spruce and Siberian spruce are genetically distinct and occupied separate LGM refugia, Norway spruce on the East European Plain and Siberian spruce in southern Siberia, where they were already widespread during the late glacial. They came into contact in the basin of the Ob River and probably hybridized. The lower genetic diversity in the eastern populations may indicate that Siberian spruce suffered more from past climatic fluctuations than Norway spruce.
Resumo:
When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.