2 resultados para mtDNA ND4

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. Although mtDNA integrity is essential for cellular and organismal viability, regulation of proliferation of the mitochondrial genome is poorly understood. To elucidate the mechanisms behind this, we chose to study the interplay between mtDNA copy number and the proteins involved in mitochondrial fusion, another required function in cells. Strikingly, we found that mouse embryonic fibroblasts lacking fusion also had a mtDNA copy number deficit. To understand this phenomenon further, we analyzed the binding of mitochondrial transcription factor A, whose role in transcription, replication, and packaging of the genome is well-established and crucial for cellular maintenance. Using ChIP-seq, we were able to detect largely uniform, non-specific binding across the genome, with no occupancy in the known specific binding sites in the regulatory region. We did detect a single binding site directly upstream of a known origin of replication, suggesting that TFAM may play a direct role in replication. Finally, although TFAM has been previously shown to localize to the nuclear genome, we found no evidence for such binding sites in our system.

To further understand the regulation of mtDNA by other proteins, we analyzed publicly available ChIP-seq datasets from ENCODE, modENCODE, and mouseENCODE for evidence of nuclear transcription factor binding to the mitochondrial genome. We identified eight human transcription factors and three mouse transcription factors that demonstrated binding events with the classical strand asymmetrical morphology of classical binding sites. ChIP-seq is a powerful tool for understanding the interactions between proteins and the mitochondrial genome, and future studies promise to further the understanding of how mtDNA is regulated within the nucleoid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. Since their discovery full-length, RAG1 and RAG2 have been difficult to purify, and core derivatives are shown to be most active when purified from adherent 293-T cells. However, the protein yield from adherent 293-T cells is limited. Here we develop a human suspension cell purification and change the expression vector to boost RAG production 6-fold. We use these purified RAG proteins to investigate V(D)J recombination on a mechanistic single molecule level. As a result, we are able to measure the binding statistics (dwell times and binding energies) of the initial RAG binding events with or without its co-factor high mobility group box protein 1 (HMGB1), and to characterize synapse formation at the single-molecule level yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage upon forming the synapse. We then go on to investigate HMGB1 further by measuring it compact single DNA molecules. We observed concentration dependent DNA compaction, differential DNA compaction depending on the divalent cation type, and found that at a particular HMGB1 concentration the percentage of DNA compacted is conserved across DNA lengths. Lastly, we investigate another HMGB protein called TFAM, which is essential for packaging the mitochondrial genome. We present crystal structures of TFAM bound to the heavy strand promoter 1 (HSP1) and to nonspecific DNA. We show TFAM dimerization is dispensable for DNA bending and transcriptional activation, but is required for mtDNA compaction. We propose that TFAM dimerization enhances mtDNA compaction by promoting looping of mtDNA.