59 resultados para Spatial pattern and association
Resumo:
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to sizeasymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individualbased plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under sizeasymmetric and sizesymmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to sizeasymmetric competition, not to variation in local density.
Resumo:
Amongst the various hypotheses that challenged to explain the coexistence of species with similar life histories, theoretical, and empirical studies suggest that spatial processes may slow down competitive exclusion and hence promote coexistence even in the absence of evident trade-offs and frequent disturbances. We investigated the effects of spatial pattern and density on the relative importance of intra- and interspecific competition in a field experiment. We hypothesized that weak competitors increased biomass and seed production within neighborhoods of conspecifics, while stronger competitors would show increased biomass and seed production within neighborhoods of heterospecifics. Seeds of four annual plant species (Capsella bursa-pastoris, Stachys annua, Stellaria media, Poa annua) were sown in two spatial patterns (aggregated vs. random) and at two densities (low vs. high) in three different species combinations (monocultures, three and four species mixtures). There was a hierarchy in biomass production among the four species and C. bursa-pastoris and S. media were among the weak competitors. Capsella and Stellaria showed increased biomass production and had more individuals in the aggregated compared to the random pattern, especially when both superior competitors (S. annua, P. annua) were present. For P. annua we observed considerable differences among species combinations and unexpected pattern effects. Our findings support the hypothesis that weak competitors increase their fitness when grown in the neighborhood of conspecifics, and suggested that for the weakest competitors the species identity is not important and all other species are best avoided through intraspecific aggregation. In addition, our data suggest that the importance of spatial pattern for the other competitors might not only depend on the position within the hierarchy but also on the identity of neighbor species, species characteristics, below ground interactions, and other nonspatial factors.
Resumo:
BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein alpha-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like alpha-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and alpha-actinin-2, and its NH(2)-terminus, which contains an actin-binding domain, directly interacted with that of plectin and alpha-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.
Resumo:
1 We used simulated and experimental plant populations to analyse mortality-driven pattern formation under size-dependent competition. Larger plants had an advantage under size-asymmetric but not under symmetric competition. Initial patterns were random or clumped. 2 The simulations were individual-based and spatially explicit. Size-dependent competition was modelled with different rules to partition overlapping zones of influence. 3 The experiment used genotypes of Arabidopsis thaliana with different morphological plasticity and hence size-dependent competition. Compared with wild types, transgenic individuals over-expressed phytochrome A and had decreased plasticity because of disabled phytochrome-mediated shade avoidance. Therefore, competition among transgenics was more asymmetric compared with wild-types. 4 Density-dependent mortality under symmetric competition did not substantially change the initial spatial pattern. Conversely, simulations under asymmetric competition and experimental patterns of transgenic over-expressors showed patterns of survivors that deviated substantially from random mortality independent of initial patterns. 5 Small-scale initial patterns of wild types were regular rather than random or clumped. We hypothesize that this small-scale regularity may be explained by early shade avoidance of seedlings in their cotyledon stage. 6 Our experimental results support predictions from an individual-based simulation model and support the conclusion that regular spatial patterns of surviving individuals should be interpreted as evidence for strong, asymmetric competitive interactions and subsequent density-dependent mortality.
Resumo:
The aim of this study was to determine gender differences in atherosclerotic lesion morphology and distribution pattern of patients with critical limb ischemia (CLI).
Resumo:
Background Since late 2003, the highly pathogenic influenza A H5N1 had initiated several outbreak waves that swept across the Eurasia and Africa continents. Getting prepared for reassortment or mutation of H5N1 viruses has become a global priority. Although the spreading mechanism of H5N1 has been studied from different perspectives, its main transmission agents and spread route problems remain unsolved. Methodology/Principal Findings Based on a compilation of the time and location of global H5N1 outbreaks from November 2003 to December 2006, we report an interdisciplinary effort that combines the geospatial informatics approach with a bioinformatics approach to form an improved understanding on the transmission mechanisms of H5N1 virus. Through a spherical coordinate based analysis, which is not conventionally done in geographical analyses, we reveal obvious spatial and temporal clusters of global H5N1 cases on different scales, which we consider to be associated with two different transmission modes of H5N1 viruses. Then through an interdisciplinary study of both geographic and phylogenetic analysis, we obtain a H5N1 spreading route map. Our results provide insight on competing hypotheses as to which avian hosts are responsible for the spread of H5N1. Conclusions/Significance We found that although South China and Southeast Asia may be the virus pool of avian flu, East Siberia may be the source of the H5N1 epidemic. The concentration of migratory birds from different places increases the possibility of gene mutation. Special attention should be paid to East Siberia, Middle Siberia and South China for improved surveillance of H5N1 viruses and monitoring of migratory birds.
Resumo:
Background Clinical relevance of tumor infiltrating lymphocytes (TILs) in breast cancer is controversial. Here, we used a tumor microarray including a large series of ductal and lobular breast cancers with long term follow up data, to analyze clinical impact of TIL expressing specific phenotypes and distribution of TILs within different tumor compartments and in different histological subtypes. Methods A tissue microarray (TMA) including 894 ductal and 164 lobular breast cancers was stained with antibodies recognizing CD4, FOXP3, and IL-17 by standard immunohistochemical techniques. Lymphocyte counts were correlated with clinico-pathological parameters and survival. Results CD4+ lymphocytes were more prevalent than FOXP3+ TILs whereas IL-17+ TILs were rare. Increased numbers of total CD4+ and FOXP3+ TIL were observed in ductal, as compared with lobular carcinomas. High grade (G3) and estrogen receptor (ER) negative ductal carcinomas displayed significantly (p < 0.001) higher CD4+ and FOXP3+ lymphocyte infiltration while her2/neu over-expression in ductal carcinomas was significantly (p < 0.001) associated with higher FOXP3+ TIL counts. In contrast, lymphocyte infiltration was not linked to any clinico-pathological parameters in lobular cancers. In univariate but not in multivariate analysis CD4+ infiltration was associated with significantly shorter survival in patients bearing ductal, but not lobular cancers. However, a FOXP3+/CD4+ ratio > 1 was associated with improved overall survival even in multivariate analysis (p = 0.033). Conclusions Ductal and lobular breast cancers appear to be infiltrated by different lymphocyte subpopulations. In ductal cancers increased CD4+ and FOXP3+ TIL numbers are associated with more aggressive tumor features. In survival analysis, absolute numbers of TILs do not represent major prognostic indicators in ductal and lobular breast cancer. Remarkably however, a ratio > 1 of total FOXP3+/CD4+ TILs in ductal carcinoma appears to represent an independent favorable prognostic factor.
Resumo:
Area-based measures of socioeconomic position (SEP) suitable for epidemiological research are lacking in Switzerland. The authors developed the Swiss neighbourhood index of SEP (Swiss-SEP).