47 resultados para SOYBEAN PROTEINASE-INHIBITOR
Resumo:
BACKGROUND Increased serum concentrations of homocysteine (HCY) and methylmalonic acid (MMA), the 2 main cobalamin-dependent metabolites, as well as decreased serum albumin and canine alpha1 -proteinase inhibitor (cα1 -PI) concentrations have previously been described in hypocobalaminemic dogs with gastrointestinal disease. However, no studies have been conducted to evaluate potential relationships between these serum biomarkers. OBJECTIVE The aim of this study was to evaluate the relationship between HCY and MMA, 2 cobalamin-dependent metabolites, and both serum albumin and cα1 -PI concentrations in hypocobalaminemic dogs. METHODS Serum samples from 285 dogs including 7 different breeds (Beagle, Boxer, Cocker Spaniel, German Shepherd, Labrador Retriever, Chinese Shar-Pei, and Yorkshire Terrier) with hypocobalaminemia were used. Serum HCY, MMA, albumin, and cα1 -PI concentrations were determined. RESULTS There was a significant correlation between serum HCY and albumin concentrations, as well as serum HCY and cα1 -PI concentrations (ρ = 0.62 and ρ = 0.37, respectively; P < .0001). No correlations were observed between serum MMA and albumin concentrations, or cα1 -PI concentrations (ρ = 0.01 and ρ = 0.08, respectively; P > .05). In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, and serum HCY and MMA concentrations in Chinese Shar-Peis with hypocobalaminemia. CONCLUSIONS This study shows a correlation between serum albumin and cα1 -PI and HCY concentrations, but not with serum MMA concentration in dogs with hypocobalaminemia. In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, as well as serum HCY and MMA concentrations in Chinese Shar-Peis, emphasizing the unique metabolic interactions in those dog breeds affected by hypocobalaminemia.
Resumo:
Gastrointestinal (GI) protein loss, due to lymphangiectasia or chronic inflammation, can be challenging to diagnose. This study evaluated the diagnostic accuracy of serum and fecal canine α1-proteinase inhibitor (cα1PI) concentrations to detect crypt abscesses and/or lacteal dilation in dogs. Serum and fecal cα1PI concentrations were measured in 120 dogs undergoing GI tissue biopsies, and were compared between dogs with and without crypt abscesses/lacteal dilation. Sensitivity and specificity were calculated for dichotomous outcomes. Serial serum cα1PI concentrations were also evaluated in 12 healthy corticosteroid-treated dogs. Serum cα1PI and albumin concentrations were significantly lower in dogs with crypt abscesses and/or lacteal dilation than in those without (both P <0.001), and more severe lesions were associated with lower serum cα1PI concentrations, higher 3 days-mean fecal cα1PI concentrations, and lower serum/fecal cα1PI ratios. Serum and fecal cα1PI, and their ratios, distinguished dogs with moderate or severe GI crypt abscesses/lacteal dilation from dogs with only mild or none such lesions with moderate sensitivity (56-92%) and specificity (67-81%). Serum cα1PI concentrations increased during corticosteroid administration. We conclude that serum and fecal α1PI concentrations reflect the severity of intestinal crypt abscesses/lacteal dilation in dogs. Due to its specificity for the GI tract, measurement of fecal cα1PI appears to be superior to serum cα1PI for diagnosing GI protein loss in dogs. In addition, the serum/fecal cα1PI ratio has an improved accuracy in hypoalbuminemic dogs, but serum cα1PI concentrations should be carefully interpreted in corticosteroid-treated dogs.
Resumo:
The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences.
Resumo:
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.
Resumo:
Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity.
Resumo:
OBJECTIVE: To evaluate serum concentrations of biochemical markers and survival time in dogs with protein-losing enteropathy (PLE). DESIGN: Prospective study. ANIMALS: 29 dogs with PLE and 18 dogs with food-responsive diarrhea (FRD). PROCEDURES: Data regarding serum concentrations of various biochemical markers at the initial evaluation were available for 18 of the 29 dogs with PLE and compared with findings for dogs with FRD. Correlations between biochemical marker concentrations and survival time (interval between time of initial evaluation and death or euthanasia) for dogs with PLE were evaluated. RESULTS: Serum C-reactive protein concentration was high in 13 of 18 dogs with PLE and in 2 of 18 dogs with FRD. Serum concentration of canine pancreatic lipase immunoreactivity was high in 3 dogs with PLE but within the reference interval in all dogs with FRD. Serum α1-proteinase inhibitor concentration was less than the lower reference limit in 9 dogs with PLE and 1 dog with FRD. Compared with findings in dogs with FRD, values of those 3 variables in dogs with PLE were significantly different. Serum calprotectin (measured by radioimmunoassay and ELISA) and S100A12 concentrations were high but did not differ significantly between groups. Seventeen of the 29 dogs with PLE were euthanized owing to this disease; median survival time was 67 days (range, 2 to 2,551 days). CONCLUSIONS AND CLINICAL RELEVANCE: Serum C-reactive protein, canine pancreatic lipase immunoreactivity, and α1-proteinase inhibitor concentrations differed significantly between dogs with PLE and FRD. Most initial biomarker concentrations were not predictive of survival time in dogs with PLE.
Resumo:
A patient with an SCN5A p.W822X nonsense mutation, localized in the transmembrane region DII-S4 of the Na(v)1.5 sodium channel and leading to a non-expression of the mutant allele, was prescribed the selective serotonin reuptake inhibitor (SSRI) fluvoxamine (Floxyfral), 100 mg per day. His normal baseline ECG changed to a characteristic Brugada-Type-1-ECG pattern. To investigate whether fluvoxamine may reduce the cardiac sodium current, the effect of this drug was studied on the wild-type voltage-gated cardiac sodium channel Na(v)1.5 stably expressed in HEK293 cells. Patch-clamp recording showed a 50% inhibition of the current at a concentration of 57.3 microM. In our patient, no arrhythmia occurred but the proarrhythmic potential of SSRI in patients with SCN5A mutations cannot be excluded. Therefore, we advise 12-lead ECG control after administering SSRI in these patients.
Resumo:
Point mutations emerge as one of the rate-limiting steps in tumor response to small molecule inhibitors of protein kinases. Here we characterized the response of the MET mutated variants, V1110I, V1238I, V1206L and H1112L to the small molecule SU11274. Our results reveal a distinct inhibition pattern of the four mutations with IC(50) values for autophosphorylation inhibition ranging between 0.15 and 1.5muM. Differences were further seen on the ability of SU11274 to inhibit phosphorylation of downstream MET transducers such as AKT, ERK, PLCgamma and STAT3 and a variety of MET-dependent biological endpoints. In all the assays, H1112L was the most sensitive to SU11274, while V1206L was less affected under the used concentration range. The differences in responses to SU11274 are discussed based on a structural model of the MET kinase domain.
Resumo:
Systemic lupus erythematosus is a chronic autoimmune disorder that predominantly affects women of childbearing age. Lupus-associated glomerulonephritis is a major cause of mortality in these patients. Current treatment protocols for systemic lupus erythematosus include cyclophosphamide, prednisolone, azathioprine, and mycophenolate mofetil. However, in mice none of these agents alone or in combination were shown to reverse established proteinuria. Using New Zealand Black x New Zealand White F1 mice, we report that administration of the topoisomerase I inhibitor irinotecan from week 13 completely prevented the onset of proteinuria and prolonged survival up to at least 90 wk without detectable side effects. Furthermore, application of irinotecan to mice with established lupus nephritis, as indicated by grade 3+ (> or =300 mg/dl) and grade 4+ (> or =2000 mg/dl) proteinuria and, according to a median age of 35 wk, resulted in remission rates of 75% and 55%, respectively. Survival was significantly prolonged with 73 wk (grade 3+ and 4+ combined) versus 40 wk for control animals. Although total IgG and anti-dsDNA Abs in the serum and mesangial IgG deposits in the kidneys were not reduced in irinotecan-treated mice, subendothelial immune deposits were considerably diminished, suggesting a prevention of glomerular basement membrane disruption. This effect was accompanied by increased rates of ssDNA breaks and inhibition of renal cell apoptosis being different to what is known about irinotecan in anticancer therapy. In conclusion, our data provide evidence that irinotecan might represent an entirely new strategy for the treatment of systemic lupus erythematosus.
Resumo:
Inhibitor of differentiation 1 (ID1) plays a role in cellular differentiation, proliferation, angiogenesis and tumor invasion. As shown recently, ID1 is positively regulated by the tyrosine kinase SRC in lung carcinoma cell lines and with that appears as a potential new therapeutic target in non-small cell carcinoma (NSCLC). To substantiate this hypothesis we examined ID1, SRC and matrix metalloproteinase-9 (MMP-9) immunohistochemically in human NSCLC specimens.
Resumo:
The authors report on bilateral simultaneous knee arthroplasty in a 40-year-old male patient with haemophilia A, high inhibitor titre and an aneurysma spurium of the right popliteal artery. Both knees showed a fixed flexion deformity of 20 degrees. To build up haemostasis, treatment with activated prothrombin complex concentrate (APCC) and recombinant activated factor seven (rFVIIa) was initiated preoperatively. A tourniquet was used on both sides during the operation and factor VIII (FVIII) was administered to further correct coagulopathy. On the eleventh postoperative day the patient complained of increasing pain and pressure in the right knee. An ultrasound suggested aneurysm, which was confirmed by substraction angiography. Under the protection of rFVIIa the aneurysm could be coiled and further rehabilitation was uneventful. At one year post-op the patient presented a range of motion of 90/5/0 degrees for both knees and had returned to full time office work. This case indicates that haemophiliacs with high antibody titre and destruction of both knees can be operated on in one session in order to diminish the operative risk of two consecutive surgical procedures, thus allowing an effective rehabilitation programme. Because of the significant frequency of popliteal aneurysms, preoperative angiography is recommended.
Resumo:
Sphingosine kinase 1 (SK1) is a key enzyme in the generation of sphingosine 1-phosphate (S1P) which critically regulates a variety of important cell responses such as proliferation and migration. Therefore, inhibition of SK-1 has been suggested to be an attractive approach to treat tumor growth and metastasis formation.
Resumo:
Non-melanoma skin cancers (NMSCs) are the most common malignancies after solid organ transplantation. Their incidence increases with time after transplantation. Calcineurin-inhibitors (CNIs) and azathioprine are known as skin neoplasia-initiating and -enhancing immunosuppressants. In contrast, increasing clinical experience suggests a relevant antiproliferative effect of mammalian target of rapamycin inhibitors, also named proliferation signal inhibitors (PSIs). We report the case of a cardiac allograft recipient with an impressive and consolidated reduction of recurrent NMSC, observed after conversion from CNI-therapy to a PSI-based protocol.
Resumo:
Paraneoplastic pemphigus (PNP) is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170), thought to be critical in PNP pathogenesis, has remained unknown.