19 resultados para N-ary Designs
Resumo:
Proper sample size estimation is an important part of clinical trial methodology and closely related to the precision and power of the trial's results. Trials with sufficient sample sizes are scientifically and ethically justified and more credible compared with trials with insufficient sizes. Planning clinical trials with inadequate sample sizes might be considered as a waste of time and resources, as well as unethical, since patients might be enrolled in a study in which the expected results will not be trusted and are unlikely to have an impact on clinical practice. Because of the low emphasis of sample size calculation in clinical trials in orthodontics, it is the objective of this article to introduce the orthodontic clinician to the importance and the general principles of sample size calculations for randomized controlled trials to serve as guidance for study designs and as a tool for quality assessment when reviewing published clinical trials in our specialty. Examples of calculations are shown for 2-arm parallel trials applicable to orthodontics. The working examples are analyzed, and the implications of design or inherent complexities in each category are discussed.
Resumo:
This randomised, controlled multicentre trial aimed at comparing two versions of a variable-thread dental implant design to a standard tapered dental implant design in cases of immediate functional loading for 36 months after loading.
Resumo:
BACKGROUND: There is evidence for the superiority of two-implant overdentures over complete dentures in the mandible. Various anchorage devices were used to provide stability to overdentures. The aim of the present study was to compare two designs of a rigid bar connecting two mandibular implants. MATERIALS AND METHODS: Completely edentulous patients received a new denture in the maxilla and an implant-supported overdenture in the mandible. They were randomly allocated to two groups (A or B) with regard to the bar design. A standard U-shaped bar (Dolder bar) was used connecting the two implants in a straight line. For comparison, precision attachments were soldered distal to the bar copings. Group A started the study with the standard bar (S-bar), while group B started with the attachment-bar (A-bar). After 3 months, they had to answer a questionnaire (visual analogue scale [VAS]); then the bar design was changed in both groups. After a period of another 3 months, the patients had to answer the same questions; then they had the choice to keep their preferred bar. Now the study period was extended to another year of observation, and the patients answered again the same questionnaire. In vivo force measurements were carried out with both bar types at the end of the test periods. The prosthetic maintenance service carried out during the 6-month period was recorded for both bar types in both groups. Statistical analysis as performed with the SPSS statistical package (SPSS Inc., Chicago, IL, USA). RESULTS: Satisfaction was high in both groups. Group B, who had entered the study with the attachment bar, gave slightly better ratings to this type for four items, while in group A, no differences were found. At the end of the 6-month comparison period, all but one patient wished to continue to wear the attachment bar. Prosthetic service was equal in groups A and B, but the total number of interventions is significantly higher in the attachment bar. Force patterns of maximum biting were similar in both bar designs, but exhibited significantly higher axial forces in the attachment bar. CONCLUSIONS: Both bar designs provide good retention and functional comfort. High stability appears to be an important factor for the patients' satisfaction and oral comfort. Rigid retention results in a higher force impact and appears to evoke the need for the retightening of occlusal screws, resulting in more maintenance service.
Resumo:
SUMMARY Split-mouth designs first appeared in dental clinical trials in the late sixties. The main advantage of this study design is its efficiency in terms of sample size as the patients act as their own controls. Cited disadvantages relate to carry-across effects, contamination or spilling of the effects of one intervention to another, period effects if the interventions are delivered at different time periods, difficulty in finding similar comparison sites within patients and the requirement for more complex data analysis. Although some additional thought is required when utilizing a split-mouth design, the efficiency of this design is attractive, particularly in orthodontic clinical studies where carry-across, period effects and dissimilarity between intervention sites does not pose a problem. Selection of the appropriate research design, intervention protocol and statistical method accounting for both the reduced variability and potential clustering effects within patients should be considered for the trial results to be valid.
Resumo:
We focus on kernels incorporating different kinds of prior knowledge on functions to be approximated by Kriging. A recent result on random fields with paths invariant under a group action is generalised to combinations of composition operators, and a characterisation of kernels leading to random fields with additive paths is obtained as a corollary. A discussion follows on some implications on design of experiments, and it is shown in the case of additive kernels that the so-called class of “axis designs” outperforms Latin hypercubes in terms of the IMSE criterion.
Resumo:
During the last years two studies for the investigation of the etiology of porcine ear necrosis were carried out at the Clinic for Swine of the University of Veterinary Medicine Vienna. In study 1, parameters, which are discussed in this context, were collected by veterinary practitioners by completing specially designed questionnaires in farms with symptoms of the porcine ear necrosis syndrome. In study 2, samples of piglets and feed were collected for laboratory analysis of the most important infectious agents as well as mycotoxins. In the present manuscript, the results of both projects were compared. Even if the selection criteria of both studies differed, the affected age class was comparable (5.5 to ten weeks of life in study 1 and six to ten weeks of life in study 2). The herd-specific prevalence of the porcine ear necrosis syndrome varied considerably with percentages between 2 and 10, respectively, to 100%. The evaluation of questionnaires in study 1 showed that 51% of the farms had problems with cannibalism. Particles of plant material, which were frequently seen on the histologic slides of study 2, could have got into the tissue by chewing the ears of the pen mates or cannibalism. Whereas in study 1 the negative effect of parameters as high pig density, suboptimal climate, missing enrichment material and bad quality of feed and water were considered, in study 2 all these factors were checked at sample collection and ruled out as precursor for cannibalism. In both studies bacterial agents proved to be a crucial co-factor for the expansion of the necroses to deeper tissue layers, whereas viral pathogens were classified less important. In both projects it was not possible to estimate the direct impact of infectious agents and mycotoxins as direct trigger of the necroses as well as their participation as co-factors or precursor in the sense of an immunosuppression or previous damage of blood vessels or tissue.
Resumo:
Factorial designs for clinical trials are often encountered in medical, dental, and orthodontic research. Factorial designs assess two or more interventions simultaneously and the main advantage of this design is its efficiency in terms of sample size as more than one intervention may be assessed on the same participants. However, the factorial design is efficient only under the assumption of no interaction (no effect modification) between the treatments under investigation and, therefore, this should be considered at the design stage. Conversely, the factorial study design may also be used for the purpose of detecting an interaction between two interventions if the study is powered accordingly. However, a factorial design powered to detect an interaction has no advantage in terms of the required sample size compared to a multi-arm parallel trial for assessing more than one intervention. It is the purpose of this article to highlight the methodological issues that should be considered when planning, analysing, and reporting the simplest form of this design, which is the 2 × 2 factorial design. An example from the field of orthodontics using two parameters (bracket type and wire type) on maxillary incisor torque loss will be utilized in order to explain the design requirements, the advantages and disadvantages of this design, and its application in orthodontic research.