19 resultados para Modern science
Resumo:
Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.
Resumo:
Formation pathways of ancient siliceous iron formations and related Fe isotopic fractionation are still not completely understood. Investigating these processes, however, is difficult as good modern analogues to ancient iron formations are scarce. Modern siliceous Fe oxyhydroxide deposits are found at marine hydrothermal vent sites, where they precipitate from diffuse, low temperature fluids along faults and fissures on the seafloor. These deposits exhibit textural and chemical features that are similar to some Phanerozoic iron formations, raising the question as to whether the latter could have precipitated from diffuse hydrothermal fluids rather than from hydrothermal plumes. In this study, we present the first data on modern Fe oxyhydroxide deposits from the Jan Mayen hydrothermal vent fields, Norwegian-Greenland Sea. The samples we investigated exhibited very low δ56Fe values between -2.09‰ and -0.66‰. Due to various degrees of partial oxidation, the Fe oxyhydroxides are with one exception either indistinguishable from low-temperature hydrothermal fluids from which they precipitated (-1.84‰ and -1.53‰ in δ56Fe) or are enriched in the heavy Fe isotopes. In addition, we investigated Fe isotope variations in Ordovician jasper beds from the Løkken ophiolite complex, Norway, which have been interpreted to represent diagenetic products of siliceous ferrihydrite precursors that precipitated in a hydrothermal plume, in order to compare different formation pathways of Fe oxyhydroxide deposits. Iron isotopes in the jasper samples have higher δ56Fe values (-0.38‰ to +0.89‰) relative to modern, high-temperature hydrothermal vent fluids (ca. -0.40‰ on average), supporting the fallout model. However, formation of the Ordovician jaspers by diffuse venting cannot be excluded, due to lithological differences of the subsurface of the two investigated vent systems. Our study shows that reliable interpretation of Fe isotope variations in modern and ancient marine Fe oxyhydroxide deposits depends on comprehensive knowledge of the geological context. Furthermore, we demonstrate that very negative δ56Fe values in such samples might not be the result of microbial dissimilatory iron reduction, but could be caused instead by inorganic reactions.
Resumo:
This tutorial review article is intended to provide a general guidance to a reader interested to learn about the methodologies to obtain accurate electron density mapping in molecules and crystalline solids, from theory or from experiment, and to carry out a sensible interpretation of the results, for chemical, biochemical or materials science applications. The review mainly focuses on X-ray diffraction techniques and refinement of experimental models, in particular multipolar models. Neutron diffraction, which was widely used in the past to fix accurate positions of atoms, is now used for more specific purposes. The review illustrates three principal analyses of the experimental or theoretical electron density, based on quantum chemical, semi-empirical or empirical interpretation schemes, such as the quantum theory of atoms in molecules, the semi-classical evaluation of interaction energies and the Hirshfeld analysis. In particular, it is shown that a simple topological analysis based on a partition of the electron density cannot alone reveal the whole nature of chemical bonding. More information based on the pair density is necessary. A connection between quantum mechanics and observable quantities is given in order to provide the physical grounds to explain the observations and to justify the interpretations.
Resumo:
This paper presents the first comprehensive analysis of sediment and dissolved load across an entire mountain range. We investigate patterns and rates of modern denudation of the European Alps based on a compilation of data about river loads and reservoir sedimentation from 202 drainage basins that are between ca. 1 to 10,000 km2 large. The study basins cover about 50% of the total area of the Alps. Modern glaciated basins have the highest sediment yields of up to 7000 t km− 2 a− 1, which are on average 5 to 10 times higher than in non-glaciated basins. Likewise sediment yield and glacial cover are positively correlated. Instead, relief is a relatively weak predictor of sediment yield. The strong glacial impact in the correlations is due to glacier recession since the 19th century as well as due to glacial conditioning during repeated Quaternary glaciations which have produced the strong transient state of the Alpine landscape. We suggest that this is the major cause for ca. 3 fold enhanced denudation of the western compared to the eastern Alps. Chemical denudation rates are highest in the external Alps dominated by carbonate sedimentary rocks, where they make up about one third of total denudation. The high rates cannot be explained without anhydrite dissolution. We estimated that only 45% of the sediments mobilized in headwaters are exported out off the Alps, most sediments being trapped in artificial reservoirs. The total amount of sediment annually trapped within the Alps equates to 43 Mt. When corrected for sediment storage, we obtain an area-weighted mean total denudation rate for the Alps of about 0.32 mm a− 1. The pre-dam rate might be as high as 0.42 mm a− 1. In total, ca. 35 plus 23 Mt of mass are exported each year out of the Alps as solids and solutes, respectively. These rates are not enough to out pace modern rock uplift. Nevertheless, pattern of sediment yield across the Alps coincides roughly with the intensity of glacial conditioning and modern rock uplift, supporting the hypothesis of an erosion-driven uplift of the Alps.
Resumo:
Recent studies have identified relationships between landscape form, erosion and climate in regions of landscape rejuvenation, associated with increased denudation. Most of these landscapes are located in non-glaciated mountain ranges and are characterized by transient geomorphic features. The landscapes of the Swiss Alps are likewise in a transient geomorphic state as seen by multiple knickzones. In this mountain belt, the transient state has been related to erosional effects during the Late Glacial Maximum (LGM). Here, we focus on the catchment scale and categorize hillslopes based on erosional mechanisms, landscape form and landcover. We then explore relationships of these variables to precipitation and extent of LGM glaciers to disentangle modern versus palaeo controls on the modern shape of the Alpine landscape. We find that in grasslands, the downslope flux of material mainly involves unconsolidated material through hillslope creep, testifying a transport-limited erosional regime. Alternatively, strength-limited hillslopes, where erosion is driven by bedrock failure, are covered by forests and/or expose bedrock, and they display oversteepened hillslopes and channels. There, hillslope gradients and relief are more closely correlated with LGM ice occurrence than with precipitation or the erodibility of the underlying bedrock. We relate the spatial occurrence of the transport- and strength-limited process domains to the erosive effects of LGM glaciers. In particular, strength-limited, rock dominated basins are situated above the equilibrium line altitude (ELA) of the LGM, reflecting the ability of glaciers to scour the landscape beyond threshold slope conditions. In contrast, transport-limited, soil-mantled landscapes are common below the ELA. Hillslopes covered by forests occupy the elevations around the ELA and are constrained by the tree line. We conclude that the current erosional forces at work in the Central Alps are still responding to LGM glaciation, and that the modern climate has not yet impacted on the modern landscape.
Resumo:
Sensation is the subject of a burgeoning field in the humanities. This volume examines its role in the religious changes and transformations of early modern Europe. Sensation was not only central to the doctrinal disputes of the Reformation, but also critical in shaping new or reformed devotional practices. From this vantage point the book explores the intersections between the world of religion and the spheres of art, music, and literature; food and smell; sacred things and spaces; ritual and community; science and medicine. Deployed in varying, often contested ways, the senses were essential pathways to the sacred. They permitted knowledge of the divine and the universe, triggered affective responses, shaped holy environments, and served to heal, guide, or discipline body and soul.