20 resultados para Intestinal-absorption
Resumo:
Ca2+ is essential for numerous physiological functions in our bodies. Therefore, its homeostasis is finely maintained through the coordination of intestinal absorption, renal reabsorption, and bone resorption. The Ca2+-selective epithelial channels TRPV5 and TRPV6 have been identified, and their physiological roles have been revealed: TRPV5 is important in final renal Ca2+ reabsorption, and TRPV6 has a key role in intestinal Ca2+ absorption. The TRPV5 knockout mice exhibit renal leak hypercalciuria and accordingly upregulate their intestinal TRPV6 expression to compensate for their negative Ca2+ balance. In contrast, despite their severe negative Ca2+ balance, TRPV6-null mice do not display any compensatory mechanism, thus resulting in secondary hyperparathyroidism. These results indicate that the genes for TRPV5 and TRPV6 are differentially regulated in human diseases associated with disturbed Ca2+ balance such as hypercalciuria, osteoporosis, and vitamin D-resistant rickets.
Resumo:
Background: Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20). Results: Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype. Conclusions: The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart.
Resumo:
Animal studies suggest that ginger (Zingiber officinale Roscoe) reduces anxiety. In this study, bioactivity-guided fractionation of a ginger extract identified nine compounds that interact with the human serotonin 5-HT(1A) receptor with significant to moderate binding affinities (K(i)=3-20 microM). [(35)S]-GTP gamma S assays indicated that 10-shogaol, 1-dehydro-6-gingerdione, and particularly the whole lipophilic ginger extract (K(i)=11.6 microg/ml) partially activate the 5-HT(1A) receptor (20-60% of maximal activation). In addition, the intestinal absorption of gingerols and shogaols was simulated and their interactions with P-glycoprotein were measured, suggesting a favourable pharmacokinetic profile for the 5-HT(1A) active compounds.
Resumo:
Advances in food transformation have dramatically increased the diversity of products on the market and, consequently, exposed consumers to a complex spectrum of bioactive nutrients whose potential risks and benefits have mostly not been confidently demonstrated. Therefore, tools are needed to efficiently screen products for selected physiological properties before they enter the market. NutriChip is an interdisciplinary modular project funded by the Swiss programme Nano-Tera, which groups scientists from several areas of research with the aim of developing analytical strategies that will enable functional screening of foods. The project focuses on postprandial inflammatory stress, which potentially contributes to the development of chronic inflammatory diseases. The first module of the NutriChip project is composed of three in vitro biochemical steps that mimic the digestion process, intestinal absorption, and subsequent modulation of immune cells by the bioavailable nutrients. The second module is a miniaturised form of the first module (gut-on-a-chip) that integrates a microfluidic-based cell co-culture system and super-resolution imaging technologies to provide a physiologically relevant fluid flow environment and allows sensitive real-time analysis of the products screened in vitro. The third module aims at validating the in vitro screening model by assessing the nutritional properties of selected food products in humans. Because of the immunomodulatory properties of milk as well as its amenability to technological transformation, dairy products have been selected as model foods. The NutriChip project reflects the opening of food and nutrition sciences to state-of-the-art technologies, a key step in the translation of transdisciplinary knowledge into nutritional advice.
Resumo:
Clopidogrel is a prodrug used widely as a platelet aggregation inhibitor. After intestinal absorption, approximately 90% is converted to inactive clopidogrel carboxylate and 10% via a two-step procedure to the active metabolite containing a mercapto group. Hepatotoxicity is a rare but potentially serious adverse reaction associated with clopidogrel. The aim of this study was to find out the mechanisms and susceptibility factors for clopidogrel-associated hepatotoxicity. In primary human hepatocytes, clopidogrel (10 and 100μM) was cytotoxic only after cytochrome P450 (CYP) induction by rifampicin. Clopidogrel (10 and 100μM) was also toxic for HepG2 cells expressing human CYP3A4 (HepG2/CYP3A4) and HepG2 cells co-incubated with CYP3A4 supersomes (HepG2/CYP3A4 supersome), but not for wild-type HepG2 cells (HepG2/wt). Clopidogrel (100μM) decreased the cellular glutathione content in HepG2/CYP3A4 supersome and triggered an oxidative stress reaction (10 and 100µM) in HepG2/CYP3A4, but not in HepG2/wt. Glutathione depletion significantly increased the cytotoxicity of clopidogrel (10 and 100µM) in HepG2/CYP3A4 supersome. Co-incubation with 1μM ketoconazole or 10mM glutathione almost completely prevented the cytotoxic effect of clopidogrel in HepG2/CYP3A4 and HepG2/CYP3A4 supersome. HepG2/CYP3A4 incubated with 100μM clopidogrel showed mitochondrial damage and cytochrome c release, eventually promoting apoptosis and/or necrosis. In contrast to clopidogrel, clopidogrel carboxylate was not toxic for HepG2/wt or HepG2/CYP3A4 up to 100µM. In conclusion, clopidogrel incubated with CYP3A4 is associated with the formation of metabolites that are toxic for hepatocytes and can be trapped by glutathione. High CYP3A4 activity and low cellular glutathione stores may be risk factors for clopidogrel-associated hepatocellular toxicity.
Resumo:
Sitosterolaemia is a rare autosomal recessive disease characterized by increased intestinal absorption of plant sterols, decreased hepatic excretion into bile and elevated concentrations in plasma phytosterols. Homozygous or compound heterozygous loss of function mutations in either of the ATP-binding cassette (ABC) proteins ABCG5 and ABCG8 explain the increased absorption of plant sterols. Here we report a Swiss index patient with sitosterolaemia, who presented with the classical symptoms of xanthomas, but also had mitral and aortic valvular heart disease. Her management over the last 20 years included a novel therapeutic approach of high-dose cholesterol feeding that was semi-effective. Mutational and extended haplotype analyses showed that our patient shared this haplotype with that of the Amish-Mennonite sitosterolaemia patients, indicating they are related ancestrally.
Resumo:
Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease.
Resumo:
There is broad evidence that lowering low-density lipoprotein (LDL) cholesterol will reduce cardiovascular risk. However, in patients on maintenance hemodialysis treatment, lowering LDL cholesterol is not as effective in preventing cardiovascular complications as in the general population. Cholesterol is either endogenously synthesized or absorbed from the intestine. It has been suggested that the benefit of using statins to prevent atherosclerotic complications is less pronounced in people with high absorption of cholesterol. Recent data indicate that patients on hemodialysis have high absorption of cholesterol. Therefore, these patients may benefit from dietary counseling to reduce cholesterol intake, from functional foods containing plant sterols and stanols, and from drugs that interfere with intestinal absorption of sterols (i.e., ezetimibe, bile acid resins, and sevelamer). This review discusses cholesterol homeostasis and the perspective of personalized treatment of hypercholesterolemia in hemodialysis.
Resumo:
Biological transport of intact proteins across epithelial cells has been documented for many absorptive and secretory tissues. Immunoglobulins were some of the earliest studied proteins in this category. The transcellular transport (transcytosis) of immunoglobulins in neonatal health and development has been recognized; the process is especially significant with ungulates because they do not transcytose immunoglobulins across the placenta to the neonate. Rather, they depend upon mammary secretion of colostrum and intestinal absorption of immunoglobulins in order to provide intestinal and systemic defense until the young ungulate develops its own humoral defense mechanisms. The neonatal dairy calf's ability to absorb immunoglobulins from colostrum is assisted by a ~24 h "open gut" phenomenon where large proteins pass the intestinal epithelial cells and enter the systemic system. However, a critical problem recognized for newborn dairy calves is that an optimum mass of colostrum Immunoglobulin G (IgG) needs to be absorbed within that 24 h window in order to provide maximal resistance to disease. Many calves do not achieve the optimum because of poor quality colostrum. While many studies have focused on calf absorption, the principal cause of the problem resides with the extreme variation (g to kg) in the mammary gland's capacity to transfer blood IgG1 into colostrum. Colostrum is a unique mammary secretory product that is formed during late pregnancy when mammary cells are proliferating and differentiating in preparation for lactation. In addition to the transcytosis of immunoglobulins, the mammary gland also concentrates a number of circulating hormones into colostrum. Remarkably, the mechanisms in the formation of colostrum in ungulates have been rather modestly studied. The mechanisms and causes of this variation in mammary gland transcytosis of IgG1 are examined, evaluated, and in some cases, explained
Resumo:
Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.
Resumo:
Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.
Resumo:
OBJECTIVES This study sought to determine whether high intestinal cholesterol absorption represents a cardiovascular risk factor and to link ABCG8 and ABO variants to cardiovascular disease (CVD). BACKGROUND Plant sterol-enriched functional foods are widely used for cholesterol lowering. Their regular intake yields a 2-fold increase in circulating plant sterol levels that equally represent markers of cholesterol absorption. Variants in ABCG8 and ABO have been associated with circulating plant sterol levels and CVD, thereby suggesting atherogenic effects of plant sterols or of cholesterol uptake. METHODS The cholestanol-to-cholesterol ratio (CR) was used as an estimate of cholesterol absorption because it is independent of plant sterols. First, we investigated the associations of 6 single nucleotide polymorphisms in ABCG8 and ABO with CR in the LURIC (LUdwisghafen RIsk and Cardiovascular health study) and the YFS (Young Finns Study) cohorts. Second, we conducted a systematic review and meta-analysis to investigate whether CR might be related to CVD. RESULTS In LURIC, the minor alleles of rs4245791 and rs4299376 and the major alleles of rs41360247, rs6576629, and rs4953023 of the ABCG8 gene and the minor allele of rs657152 of the ABO gene were significantly associated with higher CR. Consistent results were obtained for rs4245791, rs4299376, rs6576629, and rs4953023 in YFS. The meta-analysis, including 6 studies and 4,362 individuals, found that CR was significantly increased in individuals with CVD. CONCLUSIONS High cholesterol absorption is associated with risk alleles in ABCG8 and ABO and with CVD. Harm caused by elevated cholesterol absorption rather than by plant sterols may therefore mediate the relationships of ABCG8 and ABO variants with CVD.
Resumo:
BACKGROUND Hemodialysis patients are high absorbers of intestinal cholesterol; they benefit less than other patient groups from statin therapy, which inhibits cholesterol synthesis. OBJECTIVES This study sought to investigate whether the individual cholesterol absorption rate affects atorvastatin's effectiveness to reduce cardiovascular risk in hemodialysis patients. METHODS This post-hoc analysis included 1,030 participants in the German Diabetes and Dialysis Study (4D) who were randomized to either 20 mg of atorvastatin (n = 519) or placebo (n = 511). The primary endpoint was a composite of major cardiovascular events. Secondary endpoints included all-cause mortality and all cardiac events. Tertiles of the cholestanol-to-cholesterol ratio, which is an established biomarker of cholesterol absorption, were used to identify high and low cholesterol absorbers. RESULTS A total of 454 primary endpoints occurred. On multivariate time-to-event analyses, the interaction term between tertiles and treatment with atorvastatin was significantly associated with the risk of reaching the primary endpoint. Stratified analysis by cholestanol-to-cholesterol ratio tertiles confirmed this effect modification: atorvastatin reduced the risk of reaching the primary endpoint in the first tertile (hazard ratio [HR]: 0.72; p = 0.049), but not the second (HR: 0.79; p = 0.225) or third tertiles (HR: 1.21; p = 0.287). Atorvastatin consistently significantly reduced all-cause mortality and the risk of all cardiac events in only the first tertile. CONCLUSIONS Intestinal cholesterol absorption, as reflected by cholestanol-to-cholesterol ratios, predicts the effectiveness of atorvastatin to reduce cardiovascular risk in hemodialysis patients. Those with low cholesterol absorption appear to benefit from treatment with atorvastatin, whereas those with high absorption do not benefit.
Resumo:
Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.