42 resultados para Indoor games


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a geospatial model to predict the radiofrequency electromagnetic field from fixed site transmitters for use in epidemiological exposure assessment. The proposed model extends an existing model toward the prediction of indoor exposure, that is, at the homes of potential study participants. The model is based on accurate operation parameters of all stationary transmitters of mobile communication base stations, and radio broadcast and television transmitters for an extended urban and suburban region in the Basel area (Switzerland). The model was evaluated by calculating Spearman rank correlations and weighted Cohen's kappa (kappa) statistics between the model predictions and measurements obtained at street level, in the homes of volunteers, and in front of the windows of these homes. The correlation coefficients of the numerical predictions with street level measurements were 0.64, with indoor measurements 0.66, and with window measurements 0.67. The kappa coefficients were 0.48 (95%-confidence interval: 0.35-0.61) for street level measurements, 0.44 (95%-CI: 0.32-0.57) for indoor measurements, and 0.53 (95%-CI: 0.42-0.65) for window measurements. Although the modeling of shielding effects by walls and roofs requires considerable simplifications of a complex environment, we found a comparable accuracy of the model for indoor and outdoor points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans and animals face decision tasks in an uncertain multi-agent environment where an agent's strategy may change in time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and the inspector game. It performs optimally according to a pure (deterministic) and mixed (stochastic) Nash equilibrium, respectively. In contrast, temporal-difference(TD)-learning, covariance-learning, and basic reinforcement learning fail to perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in two-player games.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems for indoor positioning using radio technologies are largely studied due to their convenience and the market opportunities they offer. The positioning algorithms typically derive geographic coordinates from observed radio signals and hence good understanding of the indoor radio channel is required. In this paper we investigate several factors that affect signal propagation indoors for both Bluetooth and WiFi. Our goal is to investigate which factors can be disregarded and which should be considered in the development of a positioning algorithm. Our results show that technical factors such as device characteristics have smaller impact on the signal than multipath propagation. Moreover, we show that propagation conditions differ in each direction. We also noticed that WiFi and Bluetooth, despite operating in the same radio band, do not at all times exhibit the same behaviour.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: