7 resultados para Simulation analysis
em ArchiMeD - Elektronische Publikationen der Universit
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
Supernovae are among the most energetic events occurring in the universe and are so far the only verified extrasolar source of neutrinos. As the explosion mechanism is still not well understood, recording a burst of neutrinos from such a stellar explosion would be an important benchmark for particle physics as well as for the core collapse models. The neutrino telescope IceCube is located at the Geographic South Pole and monitors the antarctic glacier for Cherenkov photons. Even though it was conceived for the detection of high energy neutrinos, it is capable of identifying a burst of low energy neutrinos ejected from a supernova in the Milky Way by exploiting the low photomultiplier noise in the antarctic ice and extracting a collective rate increase. A signal Monte Carlo specifically developed for water Cherenkov telescopes is presented. With its help, we will investigate how well IceCube can distinguish between core collapse models and oscillation scenarios. In the second part, nine years of data taken with the IceCube precursor AMANDA will be analyzed. Intensive data cleaning methods will be presented along with a background simulation. From the result, an upper limit on the expected occurrence of supernovae within the Milky Way will be determined.
Resumo:
The systematic exploration of excited meson and baryon states was the central topic of the COMPASS physics program in the years 2008 and 2009 at the CERN facility. A hadron beam of 190 GeV/c particle momentum was impinging on a 40 cm long liquid hydrogen target to create excited states of beam particles by diffractive processes. The presented work is about the study of the process $K^- p rightarrow K^- pi^+ pi^- p_{recoil}$ where special emphasis is put on how kaons were distinguished from pions with the CEDAR detectors in the initial channel as well as with the RICH detector in the final states. At the end formed 270 000 events an invariant K pi pi mass distribution of overlapping resonances. In addition a detailed MC simulation study of 44 million decays in the range of 0.8 < m(K pi pi) [GeV/c^2] < 3.0 was performed and analysed for acceptance corrections.All information was combined into a mass independent partial wave analysis to observe resonances of individual particles. The main contribution was found in the JP = 0+, 1+, 2- and 2+ spin-parity states.
Resumo:
Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.
Resumo:
In condensed matter systems, the interfacial tension plays a central role for a multitude of phenomena. It is the driving force for nucleation processes, determines the shape and structure of crystalline structures and is important for industrial applications. Despite its importance, the interfacial tension is hard to determine in experiments and also in computer simulations. While for liquid-vapor interfacial tensions there exist sophisticated simulation methods to compute the interfacial tension, current methods for solid-liquid interfaces produce unsatisfactory results.rnrnAs a first approach to this topic, the influence of the interfacial tension on nuclei is studied within the three-dimensional Ising model. This model is well suited because despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below the so-called roughening temperature, nuclei in the Ising model are not spherical anymore but become cubic because of the anisotropy of the interfacial tension. This is similar to crystalline nuclei, which are in general not spherical but more like a convex polyhedron with flat facets on the surface. In this context, the problem of distinguishing between the two bulk phases in the vicinity of the diffuse droplet surface is addressed. A new definition is found which correctly determines the volume of a droplet in a given configuration if compared to the volume predicted by simple macroscopic assumptions.rnrnTo compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo method called ensemble switch method'' is presented which allows to compute the interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with great accuracy. In the past, the dependence of the interfacial tension on the finite size and shape of the simulation box has often been neglected although there is a nontrivial dependence on the box dimensions. As a consequence, one needs to systematically increase the box size and extrapolate to infinite volume in order to accurately predict the interfacial tension. Therefore, a thorough finite-size scaling analysis is established in this thesis. Logarithmic corrections to the finite-size scaling are motivated and identified, which are of leading order and therefore must not be neglected. The astounding feature of these logarithmic corrections is that they do not depend at all on the model under consideration. Using the ensemble switch method, the validity of a finite-size scaling ansatz containing the aforementioned logarithmic corrections is carefully tested and confirmed. Combining the finite-size scaling theory with the ensemble switch method, the interfacial tension of several model systems, ranging from the Ising model to colloidal systems, is computed with great accuracy.
Resumo:
Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn