1 resultado para writing centers

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the synthesis and characterisation of trans-(M)AB2C meso-substituted porphyrin amino acid esters (PAr) (M = 2H or Zn) with tunable electron donating and electron withdrawing Ar substituents at B positions (Ar = 4-C6H4OnBu, 4-C6H4OMe, 2,4,6-C6H2Me3, 4-C6H4Me, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5). These porphyrins were used as key building blocks for photosynthetic LHC (LHC = light-harvesting antenna complex) and RC (RC = reaction center) model compounds.rnBased on free-base or zinc(II) porphyrin amino acid esters and porphyrin acids several amide linked free-base bis(porphyrins) PAr1-PAr2 (Ar1 = 2,4,6-C6H2Me3, C6F5 and Ar2 = 2,4,6-C6H2Me3, 4-C6H4F, 4-C6H4CF3, C6F5), mono metallated bis(porphyrin) PAr1-(Zn)PAr2 (Ar1 = 2,4,6-C6H2Me3 and Ar2 =4-C6H4F) and its doubly zincated complexes (Zn)PAr1-(Zn)PAr2 were prepared. In the fluorescence spectra of free-base bis(porphyrins) the porphyrin with the strongest electron donating power of Ar substituents at B positions is the light emitting unity. The emission of mono metallated bis(porphyrin) occurs only from the free-base porphyrin building block. This phenomenon is caused by an efficient energy transfer likely via the Dexter through-bond mechanism.rnLinking of anthraquinone (Q) as electron acceptor (A) to the N-terminus of porphyrin amino acid esters ((M)PAr) and aminoferrocene (Fc) as electron donor (D) to the C-terminus of the porphyrin resulting in Q-(M)PAr-Fc triads (M = 2H or Zn, Ar = 4-C6H4OnBu, 4-C6H4OMe, 2,4,6-C6H2Me3, 4-C6H4Me, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) with tunable electron density at the porphyrin chromophore. In these triads initial oxidative PET (Q←(M)PAr) and reductive PET ((M)PAr→Fc) (PET = photoinduced electron transfer) are possible. Both processes leads to an emission quenching of (M)PAr. The efficiency of the PET pathways occurring in the Marcus normal region is controlled by the specific porphyrin electron density.rnAmide-linked conjugates PAr-Fc (Ar = 2,4,6-C6H2Me3, C6F5) and Fmoc-Fc-PAr1 (N-Fmoc-Fc = N-Fmoc protected 1,1’-ferrocene amino acid; Ar1 = C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) as well as hinges PAr2-Fc-PAr1 (Ar1 = C6H5, 4-C6H4F and Ar2 = 2,4,6-C6H2Me3) were studied with respect to the reductive PET. The PET driving force (−GET) in dyads increases with the increasing electron withdrawing character of Ar substituents. Additionally, intramolecular energy transfer between porphyrins PAr1 and PAr2 is feasible in the hinges via the Förster mechanism.rn