12 resultados para virus protein
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Candidate vaccines based on the highly attenuated orthopoxvirus strain MVA are tested against various infectious and cancer diseases and, more profound, vaccines based on wildtype and recombinant viruses have been found safe and immunogenic in clinical trials. Compared to conventional vaccine strains, MVA lacks many functional genes for potentially important regulators of virus-host interactions. However, some gene functions responsible for counteraction of cellular antiviral pathways are still conserved in the genome of MVA and the inhibition of apoptosis seems to be one important mechanism, the virus is still able to interact with.rnrnVaccinia viruses encode several proteins which prevent the induction of virus-induced apoptosis. The vaccinia virus anti-apoptotic protein F1 was shown to counteract the activation of the mitochondrial pathway of apoptosis in a highly effective manner. Another vaccinia virus protein, N1, like F1 shows structural and functional similarity to members of the cellular anti-apoptotic bcl-2 family and was also shown to inhibit apoptosis. The vaccinia virus early protein E3 inhibits programmed cell death by binding to and sequestration of dsRNA molecules, normally inducing cellular antiviral pathways also driving the induction of apoptosis. All three anti-apoptotic genes were functionally analyzed during this work.rn
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes RNA Virus aus der Familie der Flaviviridae. Sein Genom kodiert für ein ca. 3000 Aminosäuren langes Polyprotein, welches co- und posttranslational in seine funktionellen Einheiten gespalten wird. Eines dieser viralen Proteine ist NS5A. Es handelt sich hierbei um ein stark phosphoryliertes Protein, das eine amphipatische α-Helix im Amino-Terminus trägt, welche für die Membran-Assoziation von NS5A verantwortlich ist. Welche Rolle die Phosphorylierung für die Funktion des Proteins spielt, bzw. welche Funktion NS5A überhaupt ausübt, ist zur Zeit noch unklar. Beobachtungen lassen Vermutungen über eine Funktion von NS5A bei der Resistenz infizierter Zellen gegenüber Interferon-alpha zu. Weiterhin wird vermutet, das NS5A als Komponente des membranständigen HCV Replikasekomplexes an der RNA Replikation beteiligt ist. Das Ziel dieser Doktorarbeit war es, die Funktion von NS5A für die RNA Replikation zu untersuchen. Zu diesem Zweck wurde eine Serie von Phosphorylierungsstellen-Mutanten generiert, die auf Ihre Replikationsfähigkeit und den Phosphorylierungsstatus hin untersucht wurden. Wir fanden, dass bestimmte Serin-Substitutionen im Zentrum von NS5A zu einer gesteigerten RNA Replikation führten, bei gleichzeitig reduzierter NS5A Hyperphosphorylierung. Weiterhin studierten wir den Einfluß von Mutationen in der Amino-terminalen amphipatischen α-Helix von NS5A auf die RNA-Replikation, sowie Phosphorylierung und subzelluläre Lokalisation des Proteins. Wir fanden, dass geringfügige strukturelle Veränderungen der amphipatischen Helix zu einer veränderten subzellulären Lokalisation von NS5A führten, was mit einer reduzierten oder komplett inhibierten RNA Replikation einherging. Zudem interferierten die strukturellen Veränderungen mit der Hyperphosphorylierung des Proteins, was den Schluß nahe legt, dass die amphipatische Helix eine wichtige strukturelle Komponente des Proteins darstellt, die für die korrekte Faltung und Phosphorylierung des Proteins essentiell ist. Als weitere Aspekte wurden die Trans-Komplementationsfähigkeit der verschiedenen viralen Komponenten des HCV Replikasekomplexes untersucht, sowie zelluläre Interaktionspartner von NS5A identifiziert. Zusammenfassend zeigen die Ergebnisse dieser Doktorarbeit, dass NS5A eine wichtige Rolle bei der RNA-Replikation spielt. Diese Funktion wird wahrscheinlich über den Phosphorylierungszustand des Proteins reguliert.
Resumo:
A viral vector system was developed based on a DI-RNA, a sub-viral particle derived from TBSV-BS3-statice. This newly designed vector system was tested for its applicability in protein expression and induction of gene silencing. Two strategies were pursued. The first strategy was replication of the DI-RNA by a transgenically expressed TBSV replicase and the second was the replication by a so called helper virus. It could be demonstrated by northern blot analysis that the replicase, expressed by the transgenic N. benthamiana plant line TR4 or supplied by the helper virus, is able to replicate DI-RNA introduced into the plant cells. Various genes were inserted into different DI constructs in order to study the vector system with regard to protein expression. However, independent of how the replicase was provided no detectable amounts of protein were produced in the plants. Possible reasons for this failure are identified: the lack of systemic movement of the DI-RNA in the transgenic TR4 plants and the occurrence of deletions in the inserted genes in both systems. As a consequence the two strategies were considered unsuitable for protein expression. The DI-RNA vector system was able to induce silencing of transgenes as well as endogenous genes. Several different p19 deficient helper virus constructs were made to evaluate their silencing efficiency in combination with our DI-RNA constructs. However, it was found that our vector system can not compete with other existing VIGS (virus induced gene silencing) systems in this field. Finally, the influence of DI sequences on mRNA stability on transient GUS expression experiments in GUS silenced plants was evaluated. The GUS reporter gene system was found to be unsuitable for distinguishing between expression levels of wild type plants and GUS silenced transgenic plants. The results indicate a positive effect of the DI sequences on the level of protein expression and therefore further research into this area is recommended.
Resumo:
Zusammenfassung:Im Infektionszyklus des Hepatitis-B-Virus spielt das große L-Hüllprotein mit seiner einzigartigen PräS1-Domäne eine zentrale Rolle. Es vermittelt die Bindung und Aufnahme in die Leberzelle, die Verpackung der Nukleokapside in die Virushülle, die Regulation der cccDNA-Amplifikation und eine transkriptionelle Aktivierung in der Wirtszelle. Zur Erfüllung seiner vielfältigen Aufgaben benötigt das L-Protein Unterstützung durch Wirtzellfaktoren, von denen einige im Rahmen dieser Untersuchung durch Verwendung von PräS1-Konstrukten als Fängerproteine im Hefe-Zwei-Hybrid-System identifiziert wurden. Mehrere Klone, die im Hefe-Zwei-Hybrid-Test mit dem C-terminalen PräS1-Fängerprotein (Aminosäure 44-108) isoliert worden waren, enthielten Teile der cDNA von gamma2-Adaptin, einem mutmaßlichen Mitglied der Clathrin-Adaptor-Proteine. Diese sind für intrazelluläre Membrantransportprozesse mittels clathrinumhüllter Vesikel verantwortlich. Unter den interagierenden Klonen, die mit dem N-terminalen Konstrukt des L-Proteins (Aminosäure 1-70) isoliert worden waren, befand sich überproportional häufig eine cDNA, die der schweren Kette H4 der Inter-Alpha-Trypsin-Inhibitor-Familie homolog war. H4 besitzt vermutlich bei der 'Akute-Phase-Reaktion', die Entzündungen folgt, und bei der Stabilisierung der extrazellulären Matrix physiologische Bedeutung. Weitere Klone kodierten für die Serinprotease C1r. Diese ist Bestandteil des C1-Komplex, der ersten Komponente des klassischen Komplementsystems. Die Spezifität der Bindung zwischen den positiven Klonen und der PräS1-Domäne wurde in weiteren biochemischen Interaktionstests bestätigt, sodaß H4, C1r und gamma2-Adaptin als Wirtszellfaktoren in der Physiologie des Hepatitis-B-Virus wahrscheinlich eine Rolle spielen.Abstract:Little is known about host cell factors necessary for hepatitis B virus assembly and infectivity. Central to virogenesis is the large L envelope protein that mediates hepatocyte receptor binding, envelopment of viral capsids, regulation of supercoiled DNA amplification and transcriptional transactivation. To assess its multiple functions and host-protein assistance involved, we here initiated a yeast two-hybrid screen using the L-specific preS1 domain as bait to screen a human liver cDNA library for L-interacting proteins. One of the most prominent cDNAs interacting with aminoacid sequence 44-108 of L-protein encodes for gamma2-adaptin, a novel clathrin adaptor-related protein responsible for protein sorting and trafficking. Among the clones interacting with the N-terminal construct of L-protein (aminoacid sequence 1-70), a frequently isolated cDNA corresponds to the gene for inter-alpha-trypsin family heavy chain H4, likely to be involved in acute inflammatory phase response and stabilization of extracellular matrices. Some other interacting clones were found to carry the cDNA for the serine protease C1r, a subunit of the C1 complex which initiates the classical complement cascade. The specificity of the interaction between the positive clones and the preS1 domain was further confirmed in independent biochemical experiments. Taken together, the results suggest a role for H4, C1r and gamma2-adaptin as host-cell factors in L-mediated process of viral biogenesis and/or pathogenesis.
Resumo:
Untersuchungen zur posttranslationalen präS-Translokation des großen Hüllproteins des Hepatitis-B-Virus. Das große (L) Hüllprotin des Hepatitis-B-Virus (HBV) besitzt die ungewöhnliche Eigenschaft, mittels partieller, posttranslationaler Translokation seiner präS-Domäne durch intrazelluläre Membranen zwei unterschiedliche Transmembrantopologieen auszubilden. Unter Berücksichtigung der Hypothese eines HBV-spezifischen Transmembrankanals, der sich möglicherweise während der Virusmorphogenese bilden und die präS-Translokation ermöglichen könnte, wurden Parameter untersucht, welche die L-Topologie beeinflussen. Dazu wurden Wildtyp-L-Proteine und L-Mutanten in Säugerzellen synthetisiert und deren Topologie mittels Proteaseschutzversuchen untersucht. Ich konnte zeigen, daß alle Faktoren, für die angenommen wurde, daß sie für die Ausbildung einer HBV-spezifischen Pore und die damit verbundene präS-Reorientierung wichtig seien, entbehrlich sind. Im einzelnen konnte nachgewiesen werden, daß die posttranslationale präS-Translokation weder die Helferfunktion der HBV S und M Proteine, noch die kovalente Dimerausbildung der Hüllproteine benötigt. Weiterhin ergaben die Untersuchungen, daß keine der amphipathischen Transmembrandomänen des L-Proteins an der präS-Reorientierung beteiligt ist. Vielmehr wurde die hydrophobe Transmembrandomäne 2 (TM2) als ausreichend und essentiell für diesen Prozeß identifiziert. Zellfraktionierungsstudien ergaben weiterhin, daß die präS-Reorientierung und damit die duale Topologie des L-Proteins innerhalb des Endoplasmatischen Retikulums (ER) herbeigeführt wird. Letztlich konnte eine Interaktion des L-Proteins mit zellulären Chaperonen (Hsc70, Hsp40, BiP) gezeigt werden, was eine Beteiligung dieser Proteine am Translokationsprozeß nahelegt.
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes Virus aus der Familie der Flaviviridae. Es besitzt ein Plusstrang-RNA Genom von ca. 9600 Nukleotiden Länge, das nur ein kodierendes Leseraster besitzt. Das Genom wird am 5’ und 3’ Ende von nicht-translatierten Sequenzen (NTRs) flankiert, welche für die Translation und vermutlich auch Replikation von Bedeutung sind. Die 5’ NTR besitzt eine interne Ribosomeneintrittsstelle (IRES), die eine cap-unabhängige Translation des ca. 3000 Aminosäure langen viralen Polyproteins erlaubt. Dieses wird ko- und posttranslational von zellulären und viralen Proteasen in 10 funktionelle Komponenten gespalten. Inwieweit die 5’ NTR auch für die Replikation der HCV RNA benötigt wird, war zu Beginn der Arbeit nicht bekannt. Die 3’ NTR besitzt eine dreigeteilte Struktur, bestehend aus einer variablen Region, dem polyU/UC-Bereich und der sogenannten X-Sequenz, eine hochkonservierte 98 Nukleotide lange Region, die vermutlich für die RNA-Replikation und möglicherweise auch für die Translation benötigt wird. Die genuae Rolle der 3’ NTR für diese beiden Prozesse war zu Beginn der Arbeit jedoch nicht bekannt. Ziel der Dissertation war deshalb eine detaillierte genetische Untersuchung der NTRs hinsichtlich ihrer Bedeutung für die RNA-Translation und -Replikation. In die Analyse mit einbezogen wurden auch RNA-Strukturen innerhalb der kodierenden Region, die zwischen verschiedenen HCV-Genotypen hoch konserviert sind und die mit verschiedenen computer-basierten Modellen vorhergesagt wurden. Zur Kartierung der für RNA-Replikation benötigten Minimallänge der 5’ NTR wurde eine Reihe von Chimären hergestellt, in denen unterschiedlich lange Bereiche der HCV 5’ NTR 3’ terminal mit der IRES des Poliovirus fusioniert wurden. Mit diesem Ansatz konnten wir zeigen, dass die ersten 120 Nukleotide der HCV 5’ NTR als Minimaldomäne für Replikation ausreichen. Weiterhin ergab sich eine klare Korrelation zwischen der Länge der HCV 5’ NTR und der Replikationseffizienz. Mit steigender Länge der 5’ NTR nahm auch die Replikationseffizienz zu, die dann maximal war, wenn das vollständige 5’ Element mit der Poliovirus-IRES fusioniert wurde. Die hier gefundene Kopplung von Translation und Replikation in der HCV 5’ NTR könnte auf einen Mechanismus zur Regulation beider Funktionen hindeuten. Es konnte allerdings noch nicht geklärt werden, welche Bereiche innerhalb der Grenzen des IRES-Elements genau für die RNA-Replikation benötigt werden. Untersuchungen im Bereich der 3’ NTR ergaben, dass die variable Region für die Replikation entbehrlich, die X-Sequenz jedoch essentiell ist. Der polyU/UC-Bereich musste eine Länge von mindestens 11-30 Uridinen besitzen, wobei maximale Replikation ab einer Länge von 30-50 Uridinen beobachtet wurde. Die Addition von heterologen Sequenzen an das 3’ Ende der HCV-RNA führte zu einer starken Reduktion der Replikation. In den hier durchgeführten Untersuchungen zeigte keines der Elemente in der 3’ NTR einen signifikanten Einfluss auf die Translation. Ein weiteres cis aktives RNA-Element wurde im 3’ kodierenden Bereich für das NS5B Protein beschrieben. Wir fanden, dass Veränderungen dieser Struktur durch stille Punktmutationen die Replikation hemmten, welche durch die Insertion einer intakten Version dieses RNA-Elements in die variable Region der 3’ NTR wieder hergestellt werden konnte. Dieser Versuchsansatz erlaubte die genaue Untersuchung der für die Replikation kritischen Strukturelemente. Dadurch konnte gezeigt werden, dass die Struktur und die Primärsequenz der Loopbereiche essentiell sind. Darüber hinaus wurde eine Sequenzkomplementarität zwischen dem Element in der NS5B-kodierenden Region und einem RNA-Bereich in der X-Sequenz der 3’ NTR gefunden, die eine sog. „kissing loop“ Interaktion eingehen kann. Mit Hilfe von gezielten Mutationen konnten wir zeigen, dass diese RNA:RNA Interaktion zumindest transient stattfindet und für die Replikation des HCV essentiell ist.
Resumo:
In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.
Resumo:
Diese Arbeit hatte zum Ziel, den Ausschleusungsmechanismus des Hepatitis-B Virus zu beleuchten. Es ist bisher unbekannt, wie das virale Nukleokapsid umhüllt und das reife Virion aus der Leberzelle freigesetzt wird. Bei einigen RNA-Viren, beispielsweise HIV-1, Ebola oder RSV, vermitteln so genannte Late-Domänen im viralen Kapsid- oder Matrix-Protein die Knospung der Viren an intrazellulären Membranen oder der Plasmamembran. Da das HBV-Core-Protein ähnliche Sequenzen trägt, wurde in der vorliegenden Arbeit überprüft, welche Rolle diese im viralen Replikationszyklus spielen. Meine Ergebnisse zeigen, dass die beiden Prolin-reichen Sequenzen PPAY (129-132) und PPNAP (134-138), die retroviralen Late-Domänen ähneln, für die HBV-Morphogenese essentiell sind. Mutationen einzelner Aminosäuren innerhalb dieser Motive führen zu Phänotypen mit verändertem Kapsid-, Nukleokapsid- und Virus-Bildungs-Vermögen. Insbesondere sind die Aminosäure Tyrosin 132 des Motivs PPAY und die Prolinreste 134 und 135 des Motivs PPNAP erforderlich, da diese schon für die Bildung der Kapside unentbehrlich sind. Charakteristisch für beide Motive sind auch die hier gezeigten Interaktionen mit speziellen Wirtszellfaktoren, deren physiologische Funktion es ist, zelluläre Proteine in den endosomalen Sortierungsprozess einzuschleusen. Im Vordergrund stehen hier die E3 Ub-Ligase Nedd4, welche Proteine mit Ub konjugiert und diese so signifikant für die Einschleusung in das endosomale System markiert, und Tsg101, das als zentrale Komponente des ESCRT-I-Komplexes für die Erkennung von ubiquitinierten Proteinen zuständig ist und diese dadurch in die ESCRT-Kaskade des multivesikulären Endosoms einführt. Für die genannten Interaktionen ist das Motiv PPAY und hier wieder speziell das Tyrosin 132 des HBV-Core-Proteins für die Wechselwirkung mit Nedd4 notwendig. Hingegen vermittelt die L-Domänen-ähnliche Sequenz PPNAP die Assoziation von Core mit Tsg101, wobei die beiden Prolinreste 134 und 135 und auch das Asparagin 136 für die Interaktion essentiell sind. Sowohl Nedd4 als auch Tsg101 wirken im Zusammenhang mit Ubiquitin, weshalb eine Ubiquitinierung von Core, trotz bislang negativer Nachweise, wahrscheinlich ist. Zugunsten dieser Annahme spricht auch mein Nachweis, dass der Lysinrest an Position 96 des Core-Proteins, als potentieller Ub-Akzeptor, gerade in späten Schritten eine essentielle Rolle spielt. Weiterhin klärungsbedürftig ist auch die Frage, ob Core direkt mit Tsg101 und Nedd4 interagiert, oder ob andere Faktoren dazwischen geschaltet sind. Auch könnte mit Hilfe von siRNA-vermittelten Depletionsversuchen die physiologische Relevanz der Tsg101/Core-und Nedd4/Core-Interaktion weiterführend untersucht werden. Zudem zeigen meine Arbeiten, dass Core mit intrazellulären Membranen assoziiert, weshalb es interessant wäre, zu untersuchen, ob es sich hierbei um Membranen des endosomalen Systems handelt, an denen die finalen Schritte der Virus-Morphogenese stattfinden könnten.
Resumo:
Mit etwa 350 Millionen chronisch-infizierten Menschen gehört die Hepatitis-B neben der Tuberkulose und AIDS zu den häufigsten Infektionskrankheiten der Welt. Der einzig sichere Schutz vor dem bis zur Leberzirrhose persistierenden Virus bietet eine vorbeugende Impfung. Eine angemessene Therapie chronisch-erkrankter Patienten ist durch die Unkenntnis über viele Bereiche des HBV-Lebenszyklus nur eingeschränkt möglich. Gegenstand dieser Arbeit war vor allem etwas Licht in das Wechselspiel zwischen HBV und der Wirtszelle zu bringen und zelluläre Komponenten und Mechanismen zu identifizieren, die am Sortierungs- und Transportmechanismus viraler Substrukturen zur sogenannten Assembly-Plattform beteiligt sind, um dort die Freisetzung des Virus zu initiieren. Mit der vorliegenden Arbeit habe ich Methoden der Zellbiologie, Mikrobiologie, Molekularbiologie und Virologie vereint, um neue Einblicke in den HBV-Lebenszyklus zu gewinnen. Für die Ausschleusung von HBV wird seither der konstitutive Weg der Sekretion angenommen. In Anlehnung an den Mechanismus umhüllter RNA-Viren kann die Hypothese aufgestellt werden, dass das MVB (Multivesicular Body) im Prozess der HBV-Freisetzung beteiligt sein könnte. Die Freisetzung des Hepatitis-B-Virus aus einer infizierten Zelle ist ein streng organisierter Prozess, der sowohl das HBV-Coreprotein als auch die HBV-Hüllproteine zu benötigen scheint. (max. 5.000 Zeichen)Inhaltszusammenfassung in einer weiteren Sprache deutschenglischfranzösischrussischmehrsprachigsonst.Ausgangspunkt der Arbeit war eine spezifische Interaktion des großen HBV-Hüllproteins (L) mit einem neuen Mitglied der Adaptor-Protein-Komplex-Familie (AP-Komplex), dem g2?Adaptin (Hartmann-Stühler und Prange, 2001), das mutmaßlich an endosomalen Sortierungs- und Transportprozessen beteiligt ist. In Analogie zur Funktionsweise von Adaptin-Molekülen wurde vom g2-Adaptin eine Rolle in der Initiation und Steuerung der Sprossung und Freisetzung von HBV vermutet. Die im Rahmen dieser Arbeit erweiterte Charakterisierung der g2/L-Interaktion zeigte zum einen, dass die Ohrdomäne des Adaptins für die Interaktion essentiell ist und zum anderen, dass die Rekrutierung des Adaptins durch das L-Protein zu cis-Golgi-Strukturen innerhalb kleiner Transportvesikel entlang des Nukleus (perinukleär) erfolgt. Erste Ergebnisse dieser Arbeit deuteten bereits an, dass das virale Coreprotein mit demselben Adaptorprotein zu interagieren vermag. Für die g2/Core-Interaktion erwies sich in Folgearbeiten die Kopfregion des g2-Adaptins als die entscheidende Bindungsdomäne (Rost et al., 2006). Sowohl eine funktionelle Inaktivierung des g2-Adaptins durch RNA-Interferenz als auch eine g2-Adaptin- Überexpression störten die Virusmontage in späten Phasen der Morphogenese. Während ein g2-Adaptin-Überschuss die HBV-Produktion indirekt durch die Induktion dysfunktioneller endosomaler Kompartimente blockierte, verhinderte der siRNA-induzierte g2-Adaptin-Verlust die späte Ausschleusung des Virus aus der Zelle. Das Silencing von g2-Adaptin zeigte dabei weder einen Einfluss auf endosomale Strukturen noch auf die Freisetzung subviraler Partikel (Viren ohne Genom). Demzufolge scheinen sich die Mechanismen der Produktion von subviralen und viralen HBV-Partikeln bezüglich ihrer Anforderungen an Zellfunktionen und Transportwegen deutlich voneinander zu unterscheiden. Es konnten erste Hinweise darauf gefunden werden, dass die Virusmontage an endosomalen Kompartimenten (zum Beispiel dem MVB) erfolgen könnte, was durch bereits weitergeführte Untersuchungen bestätigt werden konnte (Lambert et al., J Virol, epub ahead of print). Darüber hinaus ist inzwischen bekannt, dass das Hepatitis-B-Virus für den Zusammenbau und die Freisetzung nicht nur das Adaptor-verwandte g2-Adaptin, sondern auch die endosomale Ubiquitin Ligase Nedd4, wahrscheinlich in Zusammenhang mit Ubiquitin selbst (Rost et al., 2006), benötigt. Eine Untersuchung dieser weiterführenden Aspekte war jedoch nicht mehr Inhalt dieser Arbeit. Insgesamt weisen die Daten darauf hin, dass die Sortierung und der Transport der Substrukturen des Hepatitis-B-Virus durch den MVB-Komplex zu erfolgen scheint. Dabei könnte das g2-Adaptin mit Hilfe einer Reihe von Kofaktoren (wie zum Beispiel Nedd4, Ubiquitin, etc.) eine entscheidende Rolle an der Sortierung und Anbindung des viralen L- und Coreproteins an die Assembly-Plattform spielen. Doch der genaue Mechanismus, welcher große Ähnlichkeit mit dem umhüllter RNA-Viren (wie zum Beispiel HIV-1) aufweist, bleibt noch ungeklärt. Ob weitere zelluläre Kofaktoren an der HBV-Sprossung und Freisetzung beteiligt sind, bleibt ebenfalls unbekannt und bedarf weiterer Untersuchungen.
Resumo:
Im Replikationszyklus umhüllter Viren entstehen neue Viruspartikel durch die Knospung an Membranen der Wirtszelle. An diesem Prozess sind verschiedene zelluläre Faktoren und Mechanismen beteiligt, speziell die ESCRT-Proteinkomplexe, welche die Vesikelbildung an den MVBs steuern. Auch bei HBV ist davon auszugehen, dass Komponenten der Wirtszelle an der Umhüllung und Freisetzung der Virionen beteiligt sind, allerdings sind diese noch weitgehend unbekannt. Ziel dieser Arbeit war es daher, die zellulären Faktoren genauer zu charakterisieren und ihre Funktion bei der Virusumhüllung aufzuklären. Den Ausgangspunkt für die hier durchgeführten Untersuchungen bildeten vorangegangene Arbeiten, in denen die spezifische Interaktion des L-Hüllproteins von HBV mit g2-Adaptin nachgewiesen werden konnte. Diese ist für die Morphogenese von HBV essentiell, allerdings ist die zelluläre ebenso wie die virusspezifische Funktion von g2-Adaptin bislang unbekannt. Im Rahmen dieser Arbeit sollte daher untersucht werden, wo und wie g2-Adaptin in der Zelle funktionell ist, um daraus Rückschlüsse auf die Vorgänge bei der Morphogenese von HBV ziehen zu können. Die Grundlage für die Charakterisierung von g2-Adaptin bildete seine Ähnlichkeit zu zellulären Clathrin-Adaptorproteinen. So konnte hier gezeigt werden, dass auch g2-Adaptin ein Clathrin-Bindungsmotiv besitzt, welches eine Interaktion mit Clathrin ermöglicht. Außerdem konnte ein Ubiquitin-Interaktions-Motiv (UIM) identifiziert werden, das die Bindung an ubiquitinierte Proteine vermittelt. Diese Beobachtung deutet darauf hin, dass g2-Adaptin zu einer Gruppe monomerer Adaptorproteine zählen könnte, welche als Ubiquitin-Rezeptoren in der Zelle funktionell sind. Die folgenden Analysen zeigten eine weitere Gemeinsamkeit, da auch g2-Adaptin selbst durch Ubiquitin modifiziert wird, wobei die Ubiquitinierung von einem intakten UIM abhängt. Dieser als Coupled Monoubiquitination bezeichnete Prozess wird hierbei durch die Ubiquitin-Ligase Nedd4 vermittelt, die direkt mit g2-Adaptin interagiert. Dabei konnte nachgewiesen werden, dass die C2-Domäne von Nedd4 ebenfalls mit Ubiquitin modifiziert ist, wodurch der Kontakt zum UIM von g2-Adaptin erfolgt. Die meisten der bislang bekannten Ubiquitin-bindenden Adaptorproteine, spielen bei der Vesikelentstehung an verschiedenen zellulären Membranen eine Rolle, wo sie an der Sortierung der vorwiegend ubiquitinierten Membranproteine beteiligt sind und zelluläre Komponenten rekrutieren, welche die Vesikelabschnürung vermitteln. Die Adaptorproteine sind dabei meist mit der jeweiligen Membran assoziiert, was auch für g2-Adaptin nachgewiesen werden konnte. Diese Membranbindung wird durch den N-terminalen Proteinbereich von g2-Adaptin vermittelt und erfolgt unabhängig von den Ubiquitin-bindenden Eigenschaften und von Nedd4. Allerdings scheint die Ubiquitin-Modifikation von g2-Adaptin ausschließlich in membrangebundener Form zu erfolgen. An welchen Membranen g2-Adaptin lokalisiert ist, wurde in Immunfluoreszenzstudien untersucht, wobei eine enge Assoziation von g2-Adaptin mit späten Endosomen bzw. MVBs zu beobachten war. Bei weiteren Analysen konnte auch ein funktioneller Einfluss auf die Vesikelentstehung an den MVBs nachgewiesen werden, da durch die Depletion von g2-Adaptin stark vergrößerte, defekte MVBs induziert wurden. Dies deutet darauf hin, dass g2-Adaptin als Ubiquitin-Rezeptor an diesen Prozessen beteiligt sein könnte. Ebenso wie andere Adaptorproteine könnte es hier an die Cargo-Proteine binden, diese durch den Kontakt zu Clathrin lokal konzentrieren und die Vesikelabschnürung durch die Rekrutierung der MVB-Maschinerie vermitteln. Möglicherweise stellt g2-Adaptin hierbei den bislang nicht identifizierten Adaptor dar, der die Verbindung zwischen Nedd4 und der MVB-Kaskade herstellt. Eine ähnliche Funktion für g2-Adaptin ist auch bei der Morphogenese von HBV denkbar. Aufgrund der durchgeführten Lokalisationsstudien ist anzunehmen, dass die Umhüllung der HBV-Partikel direkt an den MVBs erfolgt. Vermutlich bindet g2-Adaptin hier an das L-Hüllprotein, wobei es durch die Rekrutierung von Clathrin zu einer lokalen Anreicherung der Hüllproteine kommt. g2-Adaptin interagiert zudem in UIM-abhängiger Weise mit dem Nukleokapsid, wobei der Kontakt direkt erfolgen könnte oder durch die Ubiquitin-Ligase Nedd4 vermittelt wird, welche über eine Late-Domäne ebenfalls mit dem Nukleokapsid verbunden ist. Anscheinend gelangt das Nukleokapsid durch den Einfluss von g2-Adaptin und Nedd4 zum Ort der Virusmorphogenese, wo die eigentliche Umhüllung und die Abschnürung der Viruspartikel erfolgen. Vermutlich sind auch hier Komponenten der MVB-Maschinerie beteiligt, die womöglich durch g2-Adaptin rekrutiert werden.
Resumo:
Im Mittelpunkt dieser Arbeit stand das große L-Hüllprotein (L) des Hepatitis B - Virus. L bildet eine ungewöhnliche duale Topologie in der ER-Membran aus, welche auch im reifen Viruspartikel erhalten bleibt. In einem partiellen, posttranslationalen Reifungsprozess wird die sogenannte PräS-Region von der zytosolischen Seite der Membran aus in das ER-Lumen transloziert. Aufgrund seiner dualen Topologie und der damit verbundenen Multifunktionalität übernimmt L eine Schlüsselfunktion im viralen Lebenszyklus. Ein Schwerpunkt dieser Arbeit lag deshalb darin, neue zelluläre Interaktionspartner des L-Hüllproteins zu identifizieren. Ihre Analyse sollte helfen, das Zusammenspiel des Virus mit der Wirtszelle besser zu verstehen. Hierfür wurde das Split - Ubiquitin Hefe - Zwei - Hybrid System eingesetzt, das die Interaktionsanalyse von Membranproteinen und Membran-assoziierten Proteinen ermöglicht. Zwei der neu identifizierten Interaktionspartner, der v-SNARE Bet1 und Sec24A, die Cargo-bindende Untereinheit des CoPII-vermittelten vesikulären Transports, wurden weitergehend im humanen Zellkultursystem untersucht. Sowohl für Bet1 als auch für Sec24A konnte die Interaktion mit dem L-Hüllprotein bestätigt und der Bindungsbereich eingegrenzt werden. Die Depletion des endogenen Bet1 reduzierte die Freisetzung L-haltiger, nicht aber S-haltiger subviraler Partikel (SVP) deutlich. Im Gegensatz zu Bet1 interagierte Sec24A auch mit dem mittleren M- und kleinen S-Hüllprotein von HBV. Die Inhibition des CoPII-vermittelten vesikulären Transportweges durch kombinierte Depletion der vier Sec24 Isoformen blockierte die Freisetzung sowohl L- als auch S-haltiger SVP. Dies bedeutet, dass die HBV - Hüllproteine das ER CoPII-vermittelt verlassen, wobei sie aktiv Kontakt zur Cargo-bindenden Untereinheit Sec24A aufnehmen. Der effiziente Export der Hüllproteine aus dem ER ist für die Virusmorphogenese und somit für den HBV - Lebenszyklus essentiell. rnEin weiterer Schwerpunkt dieser Arbeit basierte auf der Interaktion des L-Hüllproteins mit dem ER-luminalen Chaperon BiP. In der vorliegenden Arbeit wurde überprüft, ob BiP, ähnlich wie das zytosolische Chaperon Hsc70, an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt ist. Hierfür wurde BiP durch die ektopische Expression seiner Ko-Chaperone BAP und ERdj4 in seiner Substrat-bindenen Kapazität manipuliert. ERdj4, ein Mitglied der Hsp40 - Proteinfamilie, stimuliert die ATPase-Aktivität von BiP, was die Substratbindung stabilisiert. Der Nukleotid - Austauschfaktor BAP hingegen vermittelt die Auflösung des BiP - Substrat - Komplexes. Die Auswirkung der veränderten in vivo-Aktivität von BiP auf die posttranslationale PräS-Translokation wurde mit Proteaseschutz - Versuchen untersucht. Die ektopische Expression des positiven als auch des negativen Regulators von BiP resultierte in einer drastischen Reduktion der posttranslationalen PräS-Translokation. Ein vergleichbarer Effekt wurde nach Manipulation des BiP ATPase - Zyklus durch Depletion der zellulären ATP - Konzentration beobachtet. Dies spricht dafür, dass das ER-luminale Chaperon BiP, zusammen mit Hsc70, eine zentrale Rolle in der Ausbildung der dualen Topologie des L-Hüllproteins spielt. rnZwei weitere Proteine, Sec62 und Sec63, die sich für die posttranslationale Translokation in der Hefe als essentiell erwiesen haben, wurden in die Analyse der dualen Topologie des L-Hüllproteins einbezogen. Interessanterweise konnte eine rein luminale Ausrichtung der PräS-Region nach kombinierter Depletion des endogenen Sec62 und Sec63 beobachtet werden. Dies deutet an, dass sowohl Sec62 als auch Sec63 an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt sind. In Analogie zur Posttranslokation der Hefe könnte Sec62 als Translokon-assoziierter Rezeptor für Substrate der Posttranslokation, und damit der PräS-Region, dienen. Sec63 könnte mit seiner J-Domäne BiP zum Translokon rekrutieren und daraufhin dessen Substrat-bindende Aktivität stimulieren. BiP würde dann, einer molekularen Ratsche gleich, die PräS-Region durch wiederholtes Binden und Freisetzen aktiv in das ER-Lumen hereinziehen, bis eine stabile duale Topologie des L-Hüllproteins ausgebildet ist. Die Bedeutung von Sec62 und Sec63 für den HBV - Lebenszyklus wird dadurch untermauert, dass sowohl die ektopische Expression als auch die Depletion des endogenen Sec63 die Freisetzung L-haltiger SVP deutlich reduziert. rn
Resumo:
Primary varicella-zoster virus (VZV) infection during childhood leads to varicella commonly known as chickenpox. After primary infection has occurred VZV establishes latency in the host. During subsequent lifetime the virus can cause reactivated infection clinically known as herpes zoster or shingles. In immunodeficient patients’ dissemination of the virus can lead to life-threatening disease. Withdrawal of acyclovir drug prophylaxis puts allogeneic hematopoietic stem-cell transplantation (HSCT) patients at increased risk for herpes zoster as long as VZV-specific cellular immunity is impaired. Although an efficient live attenuated VZV vaccine for zoster prophylaxis exists, it is not approved in immunocompromised patients due to safety reasons. Knowledge of immunogenic VZV proteins would allow designing a noninfectious nonhazardous subunit vaccine suitable for patients with immunodeficiencies. The objective of this study was to identify T cell defined virus proteins of a VZV-infected Vero cell extract that we have recently described as a reliable antigen format for interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays (Distler et al. 2008). We first separated the VZV-infected/-uninfected Vero cell extracts by size filtration and reverse-phase high performance liquid chromatography (RP-HPLC). The collected fractions were screened for VZV reactivity with peripheral blood mononuclear cells (PBMCs) of VZV-seropositive healthy individuals in the sensitive IFN-γ ELISpot assay. Using this strategy, we successfully identified bioactive fractions that contained immunogenic VZV material. VZV immune reactivity was mediated by CD4+ memory T lymphocytes (T cells) of VZV-seropositive healthy individuals as demonstrated in experiments with HLA blockade antibodies and T cell subpopulations already published by Distler et al. We next analyzed the bioactive fractions with electrospray ionization mass spectrometry (ESI-MS) techniques and identified the sequences of three VZV-derived proteins: glycoprotein E (gE); glycoprotein B (gB), and immediate early protein 62 (IE62). Complementary DNA of these identified proteins was used to generate in vitro transcribed RNA for effective expression in PBMCs by electroporation. We thereby established a reliable and convenient IFN-γ ELISPOT approach to screen PBMCs of healthy donors and HSCT patients for T cell reactivity to single full-length VZV proteins. Application in 10 VZV seropositive healthy donors demonstrated much stronger recognition of glycoproteins gE and gB compared to IE62. In addition, monitoring experiments with ex vivo PBMCs of 3 allo-HSCT patients detected strongly increased CD4+ T cell responses to gE and gB for several weeks to months after zoster onset, while IE62 reactivity remained moderate. Overall our results show for the first time that VZV glycoproteins gE and gB are major targets of the post-transplant anti-zoster CD4+ T cell response. The screening approach introduced herein may help to select VZV proteins recognized by memory CD4+ T cells for inclusion in a subunit vaccine, which can be safely used for zoster prophylaxis in immunocompromised HSCT patients.