4 resultados para very low density lipoprotein cholesterol
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Low density lipoprotein (LDL) wird in der Arterienwand enzymatisch gespalten. Das Produkt, E-LDL, enthält neben freiem Cholesterol unveresterte Fettsäuren und induziert die Produktion von Interleukin 8 (IL-8) in Endothelzellen. Der Transkriptionsfaktor nuclear factor-kappaB (NF-κB), der das IL-8-Gen normalerweise reguliert, wurde durch E-LDL jedoch nicht aktiviert: Das veränderte Lipoprotein bewirkte im Gegenteil eine Hemmung von NF-κB vor dessen Translokation in den Zellkern. In E-LDL enthaltene freie Fettsäuren waren für die Hemmung verantwortlich. Dagegen aktivierte E-LDL den Transkriptionsfaktor AP-1, wie durch Phosphorylierung von c-jun gezeigt wurde. IL-8 lockt polymorphkernige Granulozyten (PMN) an, die jedoch in der frühen atherosklerotischen Läsion nicht vorkommen. Die vorliegende Arbeit bietet eine mögliche Erklärung für ihre Abwesenheit: PMN zeigten sich wesentlich empfindlicher gegenüber der Toxizität von E-LDL als Makrophagen. Es ist denkbar, daß sie in die Läsion zwar einwandern, nach ihrem raschen Tod dort jedoch nicht mehr detektiert werden können. E-LDL aktivierte PMN, wie durch Superoxidbildung und Peroxidasefreisetzung gezeigt wurde. Sowohl Aktivierung als auch Toxizität wurden von den in E-LDL enthaltenen freien Fettsäuren verursacht, die eine direkte Schädigung der Zellmembran bewirkten. Die E-LDL-bedingte Freisetzung proinflammatorischer Substanzen aus PMN könnte ein Grund dafür sein, daß die Depletion dieser Zellen die Läsionsentwicklung hemmt.
Resumo:
LRP4, member of the LDLR family, is a multifunctional membrane-bound receptor that is expressed in various tissues. The expression of LRP4 by osteoblasts, its novel interaction with Wnt-signaling inhibitors Dkk1 and SOST, and the lower levels of activated beta-catenin in different bone locations described here, adds another player to the long list of established factors that modulate canonical Wnt-signaling in bone. By demonstrating that in addition to Wise, LRP4 is able to interact with two additional important modulators of Wnt- and BMP-signaling, our perspective of the complexity of the integration of BMP and Wnt-signaling pathways on the osteoblast surface has expanded further. Nevertheless the recently described association of both the SOST and LRP4 genes with BMD in humans, together with our findings suggest that LRP4 plays a physiologically important role in the skeletal development and bone metabolism not only in rodents, but in humans as well. The efficiency with which LRP4 binds both SOST and Dkk1, presumably at the osteoblastic surface, LRP4 may act as a sink and competes with LRP5/6 for the binding of these Wnt antagonists, which then are no longer available for suppression of the signal through the LRP5/6 axis. rnApoE, a 299 amino acid glycoprotein, is a crucial regulator in the uptake of triglyceride, phospholipids, cholesteryl esters, and cholesterol into cells. ApoE has been linked to osteoporosis, and such a role is further strengthened by the present of a high bone mass phenotype in ApoE null mice. Until recently, the effects of respective ApoE isoforms E2, E3, and E4, and their impact on bone metabolism, have been unclear. Here we report that respective human ApoE knockin mice display diverse effects on bone metabolism. ApoE2 mice show decreased trabecular bone volume per total volume in femoral bone and lumbar spine in comparison to ApoE3 and E4 animals. In this context, urinary bone resorption marker DPD is increased in these animals, which is accompanied by a low ratio of osteoclastogenesis markers OPG/RANKL. Interestingly, serum bone formation markers ALP and OCN are diminished in ApoE4 mice. In contrast to this finding, ApoE2 mice show the lowest bone formation of all groups in vivo. These findings cannot be explained by the low receptor-affinity of ApoE2 and subsequent decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin. Thus, other crucial pathways relevant for bone metabolism, e. g. Wnt/beta-catenin-signaling pathways, must be, compared to the ApoE3/4 isoforms, more affected by the ApoE2 isoform.
Resumo:
We identified syntaxin 5 (Stx5), a protein involved in intracellular vesicle trafficking, as a novel interaction partner of the very low density lipoprotein (VLDL)-receptor (VLDL-R), a member of the LDL-receptor family. In addition, we investigated the effect of Stx5 on VLDL-R maturation, trafficking and processing. Here, we demonstrated mutual association of both proteins using several in vitro approaches. Furthermore, we detected a special maturation phenotype of VLDL-R resulting from Stx5 overexpression. We found that Stx5 prevented Golgi-maturation of VLDL-R, but did not cause accumulation of the immature protein in ER to Golgi compartments, the main expression sites of Stx5. Rather more, abundantly present Stx5 was capable of translocating ER-/N-glycosylated VLDL-R to the plasma membrane, and thus was insensitive to BFA treatment and incubation at low temperature. Based on our findings, we postulate that Stx5 can directly bind to the C-terminal domain of VLDL-R, thereby influencing the receptor’s glycosylation, trafficking and processing characteristics. Resulting from that, we further suggest that Stx5, which is highly expressed in neurons along with VLDL-R, might play a role in modulating the receptor’s physiology by participating in a novel/undetermined alternative pathway bypassing the Golgi apparatus.
Resumo:
Im Rahmen dieser Arbeit sollte der Einfluss des Mevalonatpfads auf die Expression von Selenoproteinen untersucht werden. Im Mevalonatpfad, einem universellen Stoffwechselweg eukaryontischer Zellen, entstehen neben Cholesterol auch verschiedene Isoprenoide, die z.B. für die post-transkriptionelle Modifikation der Selenocystein-tRNA herangezogen werden. Selenocystein ist funktioneller Bestandteil von Selenoproteinen, welche häufig in den Abbau von oxidativem Stress involviert sind. rnDer Mevalonatpfad wird hauptsächlich durch die HMG-CoA-Reduktase (HMGCR) reguliert. Pharmaka vom „Statin“-Typ gelten als wirkungsvolle kompetitive Inhibitoren dieses Enzyms und finden ihren Einsatz bei Patienten zur Behandlung von Hypercholesterolämie, welche eine Grundlage für vaskuläre Krankheiten bildet. Trotz der allgemein guten Verträglichkeit der Statine treten jedoch auch unerwünschte Nebeneffekte, wie Erhöhung der Leberenzyme oder Myopathien auf, deren biochemischer Hintergrund bislang noch im Dunkeln liegt. rnDie in dieser Arbeit durchgeführten Experimente belegen, dass Atorvastatin, Cerivastatin und Lovastatin in klinisch relevanten Dosen die Synthese bestimmter Selenoproteine, wie der Glutathionperoxidase (GPx), in klonalen humanen Hepatocyten post-transkriptionell unterdrücken, wodurch die Zellen anfälliger für oxidativen Stress in Form von Peroxiden werden. Dieser Mechanismus könnte eine Erklärung für die häufig beobachteten abnormen Leberwerte von Statin-behandelten Patienten darstellen.rnEndogenes Cholesterol gilt ebenfalls als potenter Inhibitor der HMGCR. Die in dieser Arbeit erzielten Ergebnisse zeigen, dass Cholesterol in verschiedenen Formen, als Low-Density-Lipoprotein (LDL), als 25-Hydroxycholesterol, und als Methylcyclodextrin-Komplex in unterschiedlichen humanen Zelltypen die Selenoproteinsynthese ebenfalls unterdrücken. Der negative Zusammenhang zwischen Cholesterol und bestimmten Selenoproteinen konnte auch in vivo beobachtet werden. In juvenilen Mäusen konnte gezeigt werden, dass ein Knockout des LDL-Rezeptors sowie auch ein Knockout von Apolipoprotein E zu einer Senkung des Lebercholesterols führte, was in einer Zunahme der GPx in der Leber resultierte.rnDie vorliegenden Daten belegen erstmals einen direkten und funktionellen Zusammenhang zwischen dem Mevalonatpfad und der Selenoproteinsynthese. Unterdrückung dieses Pfades, entweder durch exogene Substanzen wie Statine, oder durch endogene Substanzen wie Cholesterol, hat offenbar zur Folge, dass essentielle Zwischenprodukte für die Modifizierung der Selenocystein-tRNA fehlen, was in einer post-transkriptionellen Verminderung der induzierbaren Selenoproteine resultiert. Dies könnte die biochemische Grundlage für einen Teil der vielfältigen gesundheitlich negativen Auswirkungen schon geringfügig erhöhter Cholesterolspiegel sein.