2 resultados para transport network management

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study deals with the internationalization behavior of a new and specific type of e-business company, namely the network managing e-business company (NM-EBC). The business model of such e-business companies is based on providing a platform and applications for users to connect and interact, on gathering and channeling the inputs provided by the users, and on organizing and managing the cross-relationships of the various participants. Examples are online communities, matching platforms, and portals. Since NM-EBCs internationalize by replicating their business model in a foreign market and by building up and managing a network of users, who provide input themselves and interact with each other, they have to convince users in foreign markets to join the network and hence to adopt their platform. We draw upon Rogers’ Diffusion of Innovations Theory and Network Theory to explain the internationalization behavior of NM-EBCs. These two theories originate from neighboring disciplines and have not yet been used to explain the internationalization of firms. We combine both theories and formulate hypotheses about which strategies NM-EBCs may choose to expand abroad. To test the applicability of our theory and to gain rich data about the internationalization behavior of these firms, we carried out multiple case studies with internationally active Germany-based NM-EBCs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.