3 resultados para thermo-dynamical

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamische Messungen mit Quarzresonatoren Die Resonanzfrequenz von Quarzoszillatoren liegt im MHz-Bereich. Die Resonanzen haben hohe Gueten und sind somit empfindlich auf kleine Aenderungen an der Resonatoroberflaeche. 1. Es wurde ein Aufbau entwickelt, um Reibung bei hohen Oberflaechengeschwindigkeiten zu messen (v = 1 m/s). Bei Annaeherung einer Kugel steigen Resonanzfrequenz sowie -breite des Schwingquarzes an. Für groeßere Normalkraefte entsteht ein elastischer Kontakt, der die Frequenzerhoehung erklaert. Kurz vor Eintreten dieses Kontaktes durchlaeuft die Daempfung ein Maximum, das charakteristisch ist für das Auftreten von Reibung. Bei Erhoehung der Schichtdicke (0,4-2,5 nm) einer Schmiermittelbeschichtung (Perfluoropolyether) verringern sich sowohl die Hoehe als auch die Breite dieses Maximums. Es verschwindet mit vollstaendiger Belegung mit einer Monolage (ca. 2 nm). Dies wird durch einen intermittierenden Kontakt der beiden Oberflaechen erklaert. 2. Die Schwingquarzoberfläche wurde mit Polymerbuersten verschiedener Schichtdicken (12-230 nm) beschichtet. Der Loesungsmittelgehalt in diesen Filmen variiert mit dem Dampfdruck der umgebenden Toluolatmosphaere. Bei Trocknung durchlaufen die Filme einen loesungsmittelinduzierten Glasuebergang. Die Sorptionskurven (Loesungsmittelgehalt gegen Dampfdruck) zeigen eine Knick beim Glasuebergang, ihre Ableitungen dagegen eine Stufe. Fuer duenner werdende Schichten verschiebt sich diese Stufe zu niedrigerem Dampfdruck sowie geringerem Loesungsmittelgehalt. Außerdem wird sie breiter und ihre Hoehe nimmt ab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit wird ein vergröbertes (engl. coarse-grained, CG) Simulationsmodell für Peptide in wässriger Lösung entwickelt. In einem CG Verfahren reduziert man die Anzahl der Freiheitsgrade des Systems, so dass manrngrössere Systeme auf längeren Zeitskalen untersuchen kann. Die Wechselwirkungspotentiale des CG Modells sind so aufgebaut, dass die Peptid Konformationen eines höher aufgelösten (atomistischen) Modells reproduziert werden.rnIn dieser Arbeit wird der Einfluss unterschiedlicher bindender Wechsel-rnwirkungspotentiale in der CG Simulation untersucht, insbesondere daraufhin,rnin wie weit das Konformationsgleichgewicht der atomistischen Simulation reproduziert werden kann. Im CG Verfahren verliert man per Konstruktionrnmikroskopische strukturelle Details des Peptids, zum Beispiel, Korrelationen zwischen Freiheitsgraden entlang der Peptidkette. In der Dissertationrnwird gezeigt, dass diese “verlorenen” Eigenschaften in einem Rückabbildungsverfahren wiederhergestellt werden können, in dem die atomistischen Freiheitsgrade wieder in die CG-Strukturen eingefügt werden. Dies gelingt, solange die Konformationen des CG Modells grundsätzlich gut mit der atomistischen Ebene übereinstimmen. Die erwähnten Korrelationen spielen einerngrosse Rolle bei der Bildung von Sekundärstrukturen und sind somit vonrnentscheidender Bedeutung für ein realistisches Ensemble von Peptidkonformationen. Es wird gezeigt, dass für eine gute Übereinstimmung zwischen CG und atomistischen Kettenkonformationen spezielle bindende Wechselwirkungen wie zum Beispiel 1-5 Bindungs- und 1,3,5-Winkelpotentiale erforderlich sind. Die intramolekularen Parameter (d.h. Bindungen, Winkel, Torsionen), die für kurze Oligopeptide parametrisiert wurden, sind übertragbarrnauf längere Peptidsequenzen. Allerdings können diese gebundenen Wechselwirkungen nur in Kombination mit solchen nichtbindenden Wechselwirkungspotentialen kombiniert werden, die bei der Parametrisierung verwendet werden, sind also zum Beispiel nicht ohne weiteres mit einem andere Wasser-Modell kombinierbar. Da die Energielandschaft in CG-Simulationen glatter ist als im atomistischen Modell, gibt es eine Beschleunigung in der Dynamik. Diese Beschleunigung ist unterschiedlich für verschiedene dynamische Prozesse, zum Beispiel für verschiedene Arten von Bewegungen (Rotation und Translation). Dies ist ein wichtiger Aspekt bei der Untersuchung der Kinetik von Strukturbildungsprozessen, zum Beispiel Peptid Aggregation.rn