3 resultados para thermal-effect

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effective interaction between two ellipsoidal particles at the interface of two fluid phases which are mediated by thermal fluctuations of the interface. Within a coarse-grained picture, the properties of fluid interfaces are very well described by an effective capillary wave Hamiltonian which governs both the equilibrium interface configuration and the thermal fluctuations (capillary waves) around this equilibrium (or mean-field) position. As postulated by the Goldstone theorem the capillary waves are long-range correlated. The interface breaks the continuous translational symmetry of the system, and in the limit of vanishing external fields - like gravity - it has to be accompanied by easily excitable long wavelength (Goldstone) modes – precisely the capillary waves. In this system the restriction of the long-ranged interface fluctuations by particles gives rise to fluctuation-induced forces which are equivalent to interactions of Casimir type and which are anisotropic in the interface plane. Since the position and the orientation of the colloids with respect to the interface normal may also fluctuate, this system is an example for the Casimir effect with fluctuating boundary conditions. In the approach taken here, the Casimir interaction is rewritten as the interaction between fluctuating multipole moments of an auxiliary charge density-like field defined on the area enclosed by the contact lines. These fluctuations are coupled to fluctuations of multipole moments of the contact line position (due to the possible position and orientational fluctuations of the colloids). We obtain explicit expressions for the behavior of the Casimir interaction at large distances for arbitrary ellipsoid aspect ratios. If colloid fluctuations are suppressed, the Casimir interaction at large distances is isotropic, attractive and long ranged (double-logarithmic in the distance). If, however, colloid fluctuations are included, the Casimir interaction at large distances changes to a power law in the inverse distance and becomes anisotropic. The leading power is 4 if only vertical fluctuations of the colloid center are allowed, and it becomes 8 if also orientational fluctuations are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die oberflächennahe Geothermie leistet im Bereich der Nutzung regenerativer Wärme einen wichtigen Beitrag zum Klima- und Umweltschutz. Um die technische Nutzung oberflächennaher Geothermie zu optimieren, ist die Kenntnis der Beschaffenheit des geologischen Untergrundes ausschlaggebend. Die vorliegende Dissertation befasst sich mit der Bestimmung verschiedener Untergrundparameter an einem Erdwärmesondenfeld. Es wurden Untersuchungen zur Bestimmung der Wärmeleitfähigkeit wie der enhanced Thermal Response Test (eTRT), sowie eine Untergrund-Temperaturüberwachung im ersten Betriebsjahr durchgeführt. Die Überwachung zeigte keine gegenseitige Beeinflussung einzelner Sonden. Ein Vergleich zwischen dem geplanten und dem tatsächlichem Wärmebedarf des ersten Betriebsjahres ergab eine Abweichung von ca. 35%. Dies zeigt, dass die Nutzungsparameter der Anlage deren Effizienz maßgeblich beeinflussen können. Der am Beispielobjekt praktisch durchgeführte eTRT wurde mittels numerischer Modellierung auf seine Reproduzierbarkeit hin überprüft. Bei einem rein konduktiven Wärmetransport im Untergrund betrug die maximale Abweichung der Messung selbst unter ungünstigen Bedingungen lediglich ca. 6% vom zu erwartenden Wert. Die Detektion von grundwasserdurchflossenen Schichten ist in den Modellen ebenfalls gut abbildbar. Problematisch bleibt die hohe Abhängigkeit des Tests von einer konstanten Wärmezufuhr. Lediglich die Bestimmung der Wärmeleitfähigkeit über das Relaxationsverhalten des Untergrundes liefert bei Wärmeeintragsschwankungen hinreichend genaue Ergebnisse. Die mathematische Nachbearbeitung von fehlerhaften Temperaturkurven bietet einen Einstiegspunkt für weiterführende Forschung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn