2 resultados para small polaron hopping

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite intensive research during the last decades, thetheoreticalunderstanding of supercooled liquids and the glasstransition is stillfar from being complete. Besides analytical investigations,theso-called energy-landscape approach has turned out to beveryfruitful. In the literature, many numerical studies havedemonstratedthat, at sufficiently low temperatures, all thermodynamicquantities can be predicted with the help of the propertiesof localminima in the potential-energy-landscape (PEL). The main purpose of this thesis is to strive for anunderstanding ofdynamics in terms of the potential energy landscape. Incontrast to the study of static quantities, this requirestheknowledge of barriers separating the minima.Up to now, it has been the general viewpoint that thermallyactivatedprocesses ('hopping') determine the dynamics only belowTc(the critical temperature of mode-coupling theory), in thesense that relaxation rates follow from local energybarriers.As we show here, this viewpoint should be revisedsince the temperature dependence of dynamics is governed byhoppingprocesses already below 1.5Tc.At the example of a binary mixture of Lennard-Jonesparticles (BMLJ),we establish a quantitative link from the diffusioncoefficient,D(T), to the PEL topology. This is achieved in three steps:First, we show that it is essential to consider wholesuperstructuresof many PEL minima, called metabasins, rather than singleminima. Thisis a consequence of strong correlations within groups of PELminima.Second, we show that D(T) is inversely proportional to theaverageresidence time in these metabasins. Third, the temperaturedependenceof the residence times is related to the depths of themetabasins, asgiven by the surrounding energy barriers. We further discuss that the study of small (but not toosmall) systemsis essential, in that one deals with a less complex energylandscapethan in large systems. In a detailed analysis of differentsystemsizes, we show that the small BMLJ system consideredthroughout thethesis is free of major finite-size-related artifacts.