2 resultados para robust torus
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Über die Liniarität der Teichmüllerschen Modulgruppe des Torus mit zwei Punktierungen. In meiner Arbeit beschäftige ich mich mit Darstellungen der Teichmüllerschen Modulgruppe des Torus mit zwei Punktierungen. Mein Ansatz hierbei ist, die Teichmüllersche Modulgruppe in eine p-adische Liegruppe einzubetten. Sei nun F die von zwei Elementen erzeugte freie Gruppe und Aut(F) die Automorphismengruppe von F. Inhalt des ersten Kapitels ist es nun zu zeigen, daß folgende Aussagen äquivalent sind: - Die Teichmüllersche Modulgruppe des Torus mit zwei Punktierungen ist linear, - Aut(F)ist linear, - F besitzt eine p-Kongruenzstruktur, deren Folgen- glieder von Aut(F) festgehalten werden, also charak- teristisch sind. Im zweiten Kapitel wird unter anderem gezeigt, daß es eine Einbettung einer Untergruppe endlichen Indexes der Aut(F) in die Automorphismengruppe einer einfachen p-adischen Liegruppe gibt. Bisher ist unbekannt, ob die Buraudarstellung treu ist.In dieser Arbeit wird ein unendliches, lineares Gleichungssystem, dessen Lösungen gerade die Koeffizienten der Wörter des Kernes der Buraudarstellung sind, vorgestellt.Im dritten Kapitel wird mit den Methoden des 1.Kapitels gezeigt, daß der Torus mit zwei Punktierungen genau dann linear ist, wenn die Teichmüllersche Modulgruppe der Sphäre mit 5 Punktierungen es auch ist. Bekanntlich ist die 4. Braidgruppe linear. Nun ist aber die 4. Braidgruppe letztlich die Teichmüllersche Modulgruppe der abgeschlossenen Kreisscheibe mit 5 Punktierungen. Wenn man nun deren Randpunkte miteinander identifiziert und anschließend wegläßt, erhält man die 5-fach punktiereSphäre.Mit der eben beschriebenen Abbildung kann man zeigen, daß die Teichmüllersche Modulgruppe der fünffach punktierten Sphäre linear ist.
Resumo:
This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.