3 resultados para quantum bound on the LW heavy particle mass

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Quantenchromodynamik ist die zugrundeliegende Theorie der starken Wechselwirkung und kann in zwei Bereiche aufgeteilt werden. Harte Streuprozesse, wie zum Beispiel die Zwei-Jet-Produktion bei hohen invarianten Massen, können störungstheoretisch behandelt und berechnet werden. Bei Streuprozessen mit niedrigen Impulsüberträgen hingegen ist die Störungstheorie nicht mehr anwendbar und phänemenologische Modelle werden für Vorhersagen benutzt. Das ATLAS Experiment am Large Hadron Collider am CERN ermöglicht es, QCD Prozesse bei hohen sowie niedrigen Impulsüberträgen zu untersuchen. In dieser Arbeit werden zwei Analysen vorgestellt, die jeweils ihren Schwerpunkt auf einen der beiden Regime der QCD legen:rnDie Messung von Ereignisformvariablen bei inelastischen Proton--Proton Ereignissen bei einer Schwerpunktsenergie von $sqrt{s} = unit{7}{TeV}$ misst den transversalen Energiefluss in hadronischen Ereignissen. rnDie Messung des zweifachdifferentiellen Zwei-Jet-Wirkungsquerschnittes als Funktion der invarianten Masse sowie der Rapiditätsdifferenz der beiden Jets mit den höchsten Transversalimpulsen kann genutzt werden um Theorievorhersagen zu überprüfen. Proton--Proton Kollisionen bei $sqrt{s} = unit{8}{TeV}$, welche während der Datennahme im Jahr 2012 aufgezeichnet wurden, entsprechend einer integrierten Luminosität von $unit{20.3}{fb^{-1}}$, wurden analysiert.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the influence of composition changes on the glass transition behavior of binary liquids in two and three spatial dimensions (2D/3D) is studied in the framework of mode-coupling theory (MCT).The well-established MCT equations are generalized to isotropic and homogeneous multicomponent liquids in arbitrary spatial dimensions. Furthermore, a new method is introduced which allows a fast and precise determination of special properties of glass transition lines. The new equations are then applied to the following model systems: binary mixtures of hard disks/spheres in 2D/3D, binary mixtures of dipolar point particles in 2D, and binary mixtures of dipolar hard disks in 2D. Some general features of the glass transition lines are also discussed. The direct comparison of the binary hard disk/sphere models in 2D/3D shows similar qualitative behavior. Particularly, for binary mixtures of hard disks in 2D the same four so-called mixing effects are identified as have been found before by Götze and Voigtmann for binary hard spheres in 3D [Phys. Rev. E 67, 021502 (2003)]. For instance, depending on the size disparity, adding a second component to a one-component liquid may lead to a stabilization of either the liquid or the glassy state. The MCT results for the 2D system are on a qualitative level in agreement with available computer simulation data. Furthermore, the glass transition diagram found for binary hard disks in 2D strongly resembles the corresponding random close packing diagram. Concerning dipolar systems, it is demonstrated that the experimental system of König et al. [Eur. Phys. J. E 18, 287 (2005)] is well described by binary point dipoles in 2D through a comparison between the experimental partial structure factors and those from computer simulations. For such mixtures of point particles it is demonstrated that MCT predicts always a plasticization effect, i.e. a stabilization of the liquid state due to mixing, in contrast to binary hard disks in 2D or binary hard spheres in 3D. It is demonstrated that the predicted plasticization effect is in qualitative agreement with experimental results. Finally, a glass transition diagram for binary mixtures of dipolar hard disks in 2D is calculated. These results demonstrate that at higher packing fractions there is a competition between the mixing effects occurring for binary hard disks in 2D and those for binary point dipoles in 2D.