5 resultados para postweld heat treatment

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Corundum is one of the most famous gems materials. Different heat treatment methods for enhancement purposes are commonly applied and accepted in the gem market. With this reason, the identification of the natural, unheated corundum is intensively investigated. In this study, aluminium hydroxide minerals and zircon are focused to observe the crystallization and phase change of these minerals during heat treatment procedures. Aluminium hydroxide minerals can be transformed to alumina with the corundum structure by heating. The reaction history of aluminium hydroxide minerals containing corundum was investigated comparing it with diaspore, boehmite, gibbsite and bayerite by TG and DTA methods. These hydroxide minerals were entirely transformed to corundum after heating at 600°C. Zircon inclusions in corundums from Ilakaka, Madagascar, were investigated for the influence of different heat-treatment temperatures on the recovery of their crystalline structure and on possible reactions within and with the host crystals. The host corundum was heated at 500, 800, 1000, 1200, 1400, 1600 and 1800°C. The crystallinity, the trapped pressure, and the decomposition of the zircon inclusions within the host corundum have been investigated by Raman spectroscopy. Radiation-damaged zircon inclusions may be used as an indicator for unheated Ilakaka corundum crystals. They are fully recrystallized after heating at 1000°C influencing the lowering of the 3 Raman band shift, the decreasing of FWHM of the 3 Raman band and the decreasing of the trapped pressure between the inclusion and the host corundum. Under microscopic observation, surface alterations of the inclusions can be firstly seen from transparent into frosted-like appearance at 1400°C. Then, between 1600°C and 1800 °C, the inclusion becomes partly or even completely molten. The decomposition of the zircon inclusion to m-ZrO2 and SiO2-glass phases begins at the rim of the inclusion after heating from 1200°C to 1600°C which can be detected by the surface change, the increase of the 3 Raman band position and the trapped pressure. At 1800°C, the zircon inclusions entirely melt transforming to solid phases during cooling like m-ZrO2 and SiO2-glass accompanied by an increase of pressure between the transformed inclusion and its host.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Co- und Fe-dotierte Rutil- und Anatas-Bulkproben wurden über einen Sol-Gel Prozess und anschließende thermische Behandlung dargestellt und auf ihre Zugehörigkeit zu der Gruppe der verdünnten magnetischen Oxide untersucht. Die Untersuchungen der dotierten Rutil-Proben mittels Röntgenbeugung, Elektronenmikroskopie und magnetischen Methoden zeigen, dass die Löslichkeit von Co und Fe in der TiO2-Modifikation Rutil sehr gering ist. Oberhalb von 1at% Co bzw. Fe wird neben Rutil die Bildung der Oxide CoTiO3 bzw. Fe2TiO5 beobachtet. Weitere thermische Behandlung im Argon-H2-Strom führte aufgrund der Bildung von metallischem Co bzw. Fe zu einem ferromagnetischen Verhalten. Die TiO2-Modifikation Anatas besitzt eine höhere Löslichkeit, so dass erst oberhalb von 4at% Co bzw. 10at% Fe die Phasen Co3O4 bzw. FeTiO3 neben Anatas auftreten. Entsprechende Proben zeigen ein paramagnetisches Verhalten. Oberhalb der Löslichkeitsgrenze führt die Reduktion im Argon-H2-Strom zu einem ferromagnetischen Verhalten, welches auf metallisches Co bzw. Fe zurückzuführen ist. Analog zu den Bulkproben wurden Co- und Fe-dotierte TiO2-Nanodrähte hergestellt. Das magnetische Verhalten der Fe-dotierten TiO2-Nanodrähte entspricht dem der Fe-dotierten Anatas-Bulkproben. Dagegen führt die Co-Dotierung nicht zu einem Einbau in die TiO2-Nanodrähte, sondern zur Bildung von CoOx-Nanopartikeln. Die entsprechenden Proben zeigen ein schwach ferromagnetisches Verhalten. Dies ist jedoch nicht auf eine ferromagnetische Dotierung der TiO2-Nanodrähte zurückzuführen, sondern auf nicht kompensierte Momente an den Oberflächen der als Verunreinigungen auftretenden CoOx-Nanopartikel. Zusammenfassend wird festgestellt, dass die Löslichkeit von Co und Fe in TiO2 für die Ausbildung eines ferromagnetischen Verhaltens zu gering ist. Der beobachtete Ferromagnetismus lässt sich eindeutig auf magnetische Verunreinigungen zurückführen. Somit können die dotierten TiO2 Proben nicht den verdünnten magnetischen Oxiden zugeordnet werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zusammenfassung:rnDie vorliegende Arbeit beschreibt das Design und die Synthese neuartiger Porphyrinoide anhand der Modifikation und der π-Systemausdehnung an der Peripherie des Porphyrin-Gerüsts. Die Darstellung künstlicher Porphyrine ist von Interesse, da neue physiko-chemischen Eigenschaften erhalten und untersucht werden können. Die in dieser Arbeit vorgestellten Porphyrinoide wurden mit Hilfe von modernen Synthesemethoden wie den metallkatalysierten Kreuzkupplungen und somit durch Aryl-Aryl Verknüpfungen aufgebaut.rnDer erste Teil dieser Arbeit befasst sich mit der Modifikation des Porphyrin-Gerüsts. Porphyrine bestehen aus jeweils zwei Pyrrol- und Pyrrolenin-Einheiten, welche systematisch ausgetauscht wurden. Die Pyrrol-Einheiten wurden durch Carbazol ersetzt, das sich formal vom Pyrrol durch Anfügen von zwei Benzogruppen ableitet und deshalb besonders gut geeignet ist. Die Pyrrolenin-Einheiten wurden aus folgenden Gründen durch andere Heterozyklen wie Pyridin, Pyrrol oder Triazol ersetzt: rn* Nachbildung des stabilen Porphyrin trans-NH-Tautomers (Carbazol und Pyridin)rn* Nachbildung von (NH)4-Liganden wie Calix[4]pyrrol (Carbazol und Pyrrol)rn* Vereinigung von N-H und C-H Wasserstoffbrücken-Donor-Einheiten in einem Makrozyklus (Carbazol und Triazol)rnDie Synthese eines drei-Zentren Porphyrinoids mit ausgedehntem π-System wird im zweiten Teil der vorliegenden Arbeit beschrieben. Dieses Thema basiert auf der aktuellen Entwicklung von nicht-Edelmetall basierten Katalysatoren für die Reduktion von Sauerstoff. Hier werden derzeit N4 makrozyklische Metallkomplexe, die mehrere katalytisch aktive Stellen aufweisen, untersucht. In diesem Zusammenhang, hat die Gruppe von Prof. Müllen einen neuartigen drei-Zentren-Komplex entwickelt. Ausgehend von diesen Erkenntnissen, dient diese Arbeit zur Verbesserung der katalytischen Aktivität des drei-Zentren-Komplex durch die Variation von verschieden Substituenten. Hierbei wurden zwei wesentliche Konzepte verfolgt:rn* Vernetzung durch die Bildung von Netzwerken oder durch Pyrolyse in der Mesophasern* Verbesserung des Katalysator-Trägermaterial-KontaktsrnNeben den Synthesen wurden die Eigenschaften und möglichen Anwendungen dieser neuartigen Materialen untersucht, wie z.B. als Liganden für Übergangsmetalle, als Anionenrezeptoren oder als Elektrokatalysatoren für die Reduktion von Sauerstoff. rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermoelektrizität beschreibt die reversible Beeinflussung und Wechselwirkung von Elektrizität und Temperatur T in Systemen abseits des thermischen Gleichgewichtes. In diesen führt ein Temperaturgradient entlang eines thermoelektrischen Materials zu einem kontinuierlichen Ungleichgewicht in der Energieverteilung der Ladungsträger. Dies hat einen Diffusionsstrom der energiereichen Ladungsträger zum kalten Ende und der energiearmen Ladungsträger zum heißen Ende zur Folge. Da in offenen Stromkreisen kein Strom fließt, wird ein Ungleichgewicht der Ströme über das Ausbilden eines elektrischen Feldes kompensiert. Die dadurch entstehende Spannung wird als Seebeck Spannung bezeichnet. Über einen geeigneten Verbraucher, folgend aus dem Ohm'schen Gesetz, kann nun ein Strom fließen und elektrische Energie gewonnen werden. Den umgekehrten Fall beschreibt der sogenannte Peltier Effekt, bei dem ein Stromfluss durch zwei unterschiedliche miteinander verbundene Materialien ein Erwärmen oder Abkühlen der Kontaktstelle zur Folge hat. Die Effizienz eines thermoelektrischen Materials kann über die dimensionslose Größe ZT=S^2*sigma/kappa*T charakterisiert werden. Diese setzt sich zusammen aus den materialspezifischen Größen der elektrischen Leitfähigkeit sigma, der thermischen Leitfähigkeit kappa und dem Seebeck Koeffizienten S als Maß der erzeugten Spannung bei gegebener Temperaturdifferenz. Diese Arbeit verfolgt den Ansatz glaskeramische Materialien mit thermoelektrischen Kristallphasen zu synthetisieren, sie strukturell zu charakterisieren und ihre thermoelektrischen Eigenschaften zu messen, um eine Struktur-Eigenschaft Korrelation zu erarbeiten. Hierbei werden im Detail eine elektronenleitende (Hauptphase SrTi_xNb_{1-x}O_3) sowie eine löcherleitende Glaskeramik (Hauptphase Bi_2Sr_2Co_2O_y) untersucht. Unter dem Begriff Glaskeramiken sind teilkristalline Materialien zu verstehen, die aus Glasschmelzen durch gesteuerte Kristallisation hergestellt werden können. Über den Grad der Kristallisation und die Art der ausgeschiedenen Spezies an Kristallen lassen sich die physikalischen Eigenschaften dieser Systeme gezielt beeinflussen. Glaskeramiken bieten, verursacht durch ihre Restglasphase, eine niedrige thermische Leitfähigkeit und die Fermi Energie lässt sich durch Dotierungen in Richtung des Leitungs- oder Valenzbands verschieben. Ebenso besitzen glaskeramische Materialien durch ihre Porenfreiheit verbesserte mechanische Eigenschaften gegenüber Keramiken und sind weniger anfällig für den Einfluss des Sauerstoffpartialdruckes p_{O_2} auf die Parameter. Ein glaskeramisches und ein gemischt keramisch/glaskeramisches thermoelektrisches Modul aus den entwickelten Materialien werden konzipiert, präpariert, kontaktiert und bezüglich ihrer Leistung vermessen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The world's rising demand of energy turns the development of sustainable and more efficient technologies for energy production and storage into an inevitable task. Thermoelectric generators, composed of pairs of n-type and p-type semiconducting materials, di¬rectly transform waste heat into useful electricity. The efficiency of a thermoelectric mate¬rial depends on its electronic and lattice properties, summarized in its figure of merit ZT. Desirable are high electrical conductivity and Seebeck coefficients, and low thermal con¬ductivity. Half-Heusler materials are very promising candidates for thermoelectric applications in the medium¬ temperature range such as in industrial and automotive waste heat recovery. The advantage of Heusler compounds are excellent electronic properties and high thermal and mechanical stability, as well as their low toxicity and elemental abundance. Thus, the main obstacle to further enhance their thermoelectric performance is their relatively high thermal conductivity.rn rnIn this work, the thermoelectric properties of the p-type material (Ti/Zr/Hf)CoSb1-xSnx were optimized in a multistep process. The concept of an intrinsic phase separation has recently become a focus of research in the compatible n-type (Ti/Zr/Hf)NiSn system to achieve low thermal conductivities and boost the TE performance. This concept is successfully transferred to the TiCoSb system. The phase separation approach can form a significant alternative to the previous nanostructuring approach via ball milling and hot pressing, saving pro¬cessing time, energy consumption and increasing the thermoelectric efficiency. A fundamental concept to tune the performance of thermoelectric materials is charge carrier concentration optimization. The optimum carrier concentration is reached with a substitution level for Sn of x = 0.15, enhancing the ZT about 40% compared to previous state-of-the-art samples with x = 0.2. The TE performance can be enhanced further by a fine-tuning of the Ti-to-Hf ratio. A correlation of the microstructure and the thermoelectric properties is observed and a record figure of merit ZT = 1.2 at 710°C was reached with the composition Ti0.25Hf0.75CoSb0.85Sn0.15.rnTowards application, the long term stability of the material under actual conditions of operation are an important issue. The impact of such a heat treatment on the structural and thermoelectric properties is investigated. Particularly, the best and most reliable performance is achieved in Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum ZT of 1.1 at 700°C. The intrinsic phase separation and resulting microstructure is stable even after 500 heating and cooling cycles.