3 resultados para photosynthetic pathway
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
LRP1 modulates APP trafficking and metabolism within compartments of the secretory pathway The amyloid precursor protein (APP) is the parent protein to the amyloid beta peptide (Abeta) and is a central player in Alzheimer’s disease (AD) pathology. Abeta liberation depends on APP cleavage by beta- and gamma-secretases. To date, only a unilateral view of APP processing exists, excluding other proteins, which might be transported together and/or processed dependent on each other by the secretases described above. The low density lipoprotein receptor related protein 1 (LRP1) was shown to function as such a mediator of APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. Therefore, we wanted to investigate whether LRP1 can mediate APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, we demonstrate that APP trafficking is strongly influenced by LRP1 transport through the endoplasmic reticulum (ER) and Golgi compartments. LRP1-constructs with ER- and Golgi-retention motifs (LRP-CT KKAA, LRP-CT KKFF) had the capacity to retard APP trafficking at the respective steps in the secretory pathway. Here, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases. Increased AICD generation is ineffective in nuclear translocation and transcriptional activity A sequence of amyloid precursor protein (APP) cleavages gives rise to the APP intracellular domain (AICD) together with amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors identified favouring the accumulation of AICD appears to be a rise in intracellular pH. This accumulation is a result of an abrogated cleavage event and does not extend to other secretase substrates. AICD can activate the transcription of artificially expressed constructs and many downstream gene targets have been discussed. Here we further identified the metabolism and subcellular localization of the constructs used in this well documented gene reporter assay. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely that cleaved from C83. Furthermore, the AICD surplus is not transcriptionally active but rather remains membrane tethered and free in the cytosol where it interacts with Fe65. However, Fe65 is still essential in AICD mediated transcriptional transactivation although its exact role in this set of events is unclear.
Gene expression analysis in ‘Candidatus Phytoplasma mali’-resistant and -susceptible Malus genotypes
Resumo:
Apple proliferation (AP) disease is the most important graft-transmissible and vector-borne disease of apple in Europe. ‘Candidatus Phytoplasma mali’ (Ca. P. mali) is the causal agent of AP. Apple (Malus x domestica) and other Malus species are the only known woody hosts. In European apple orchards, the cultivars are mainly grafted on one rootstock, M. x domestica cv. M9. M9 like all other M. x domestica cultivars is susceptible to ‘Ca. P. mali’. Resistance to AP was found in the wild genotype Malus sieboldii (MS) and in MS-derived hybrids but they were characterised by poor agronomic value. The breeding of a new rootstock carrying the resistant and the agronomic traits was the major aim of a project of which this work is a part. The objective was to shed light into the unknown resistance mechanism. The plant-phytoplasma interaction was studied by analysing differences between the ‘Ca. P. mali’-resistant and -susceptible genotypes related to constitutively expressed genes or to induced genes during infection. The cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique was employed in both approaches. Differences related to constitutively expressed genes were identified between two ‘Ca. P. mali’-resistant hybrid genotypes (4551 and H0909) and the ‘Ca. P. mali’-susceptible M9. 232 cDNA-AFLP bands present in the two resistant genotypes but absent in the susceptible one were isolated but several different products associated to each band were found. Therefore, two different macroarray hybridisation experiments were performed with the cDNA-AFLP fragments yielding 40 sequences encoding for genes of unknown function or a wide array of functions including plant defence. In the second approach, individuation and analysis of the induced genes was carried out exploiting an in vitro system in which healthy and ‘Ca. P. mali’-infected micropropagated plants were maintained under controlled conditions. Infection trials using in vitro grafting of ‘Ca. P. mali’ showed that the resistance phenotype could be reproduced in this system. In addition, ex vitro plants were generated as an independent control of the genes differentially expressed in the in vitro plants. The cDNA-AFLP analysis in in vitro plants yielded 63 bands characterised by over-expression in the infected state of both the H0909 and MS genotypes. The major part (37 %) of the associated sequences showed homology with products of unknown function. The other genes were involved in plant defence, energy transport/oxidative stress response, protein metabolism and cellular growth. Real-time qPCR analysis was employed to validate the differential expression of the genes individuated in the cDNA-AFLP analysis. Since no internal controls were available for the study of the gene expression in Malus, an analysis on housekeeping genes was performed. The most stably expressed genes were the elongation factor-1 α (EF1) and the eukaryotic translation initiation factor 4-A (eIF4A). Twelve out of 20 genes investigated through qPCR were significantly differentially expressed in at least one genotype either in in vitro plants or in ex vitro plants. Overall, about 20% of the genes confirmed their cDNA-AFLP expression pattern in M. sieboldii or H0909. On the contrary, 30 % of the genes showed down-regulation or were not differentially expressed. For the remaining 50 % of the genes a contrasting behaviour was observed. The qPCR data could be interpreted as follows: the phytoplasma infection unbalance photosynthetic activity and photorespiration down-regulating genes involved in photosynthesis and in the electron transfer chain. As result, and in contrast to M. x domestica genotypes, an up-regulation of genes of the general response against pathogens was found in MS. These genes involved the pathway of H2O2 and the production of secondary metabolites leading to the hypothesis that a response based on the accumulation of H2O2 in MS would be at the base of its resistance. This resembles a phenomenon known as “recovery” where the spontaneous remission of the symptoms is observed in old susceptible plants but occurring in a stochastic way while the resistance in MS is an inducible but stable feature. As additional product of this work three cDNA-AFLP-derived markers were developed which showed independent distribution among the seedlings of two breeding progenies and were associated to a genomic region characteristic of MS. These markers will contribute to the development of molecular markers for the resistance as well as to map the resistance on the Malus genome.
Resumo:
This thesis reports on the synthesis and characterisation of trans-(M)AB2C meso-substituted porphyrin amino acid esters (PAr) (M = 2H or Zn) with tunable electron donating and electron withdrawing Ar substituents at B positions (Ar = 4-C6H4OnBu, 4-C6H4OMe, 2,4,6-C6H2Me3, 4-C6H4Me, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5). These porphyrins were used as key building blocks for photosynthetic LHC (LHC = light-harvesting antenna complex) and RC (RC = reaction center) model compounds.rnBased on free-base or zinc(II) porphyrin amino acid esters and porphyrin acids several amide linked free-base bis(porphyrins) PAr1-PAr2 (Ar1 = 2,4,6-C6H2Me3, C6F5 and Ar2 = 2,4,6-C6H2Me3, 4-C6H4F, 4-C6H4CF3, C6F5), mono metallated bis(porphyrin) PAr1-(Zn)PAr2 (Ar1 = 2,4,6-C6H2Me3 and Ar2 =4-C6H4F) and its doubly zincated complexes (Zn)PAr1-(Zn)PAr2 were prepared. In the fluorescence spectra of free-base bis(porphyrins) the porphyrin with the strongest electron donating power of Ar substituents at B positions is the light emitting unity. The emission of mono metallated bis(porphyrin) occurs only from the free-base porphyrin building block. This phenomenon is caused by an efficient energy transfer likely via the Dexter through-bond mechanism.rnLinking of anthraquinone (Q) as electron acceptor (A) to the N-terminus of porphyrin amino acid esters ((M)PAr) and aminoferrocene (Fc) as electron donor (D) to the C-terminus of the porphyrin resulting in Q-(M)PAr-Fc triads (M = 2H or Zn, Ar = 4-C6H4OnBu, 4-C6H4OMe, 2,4,6-C6H2Me3, 4-C6H4Me, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) with tunable electron density at the porphyrin chromophore. In these triads initial oxidative PET (Q←(M)PAr) and reductive PET ((M)PAr→Fc) (PET = photoinduced electron transfer) are possible. Both processes leads to an emission quenching of (M)PAr. The efficiency of the PET pathways occurring in the Marcus normal region is controlled by the specific porphyrin electron density.rnAmide-linked conjugates PAr-Fc (Ar = 2,4,6-C6H2Me3, C6F5) and Fmoc-Fc-PAr1 (N-Fmoc-Fc = N-Fmoc protected 1,1’-ferrocene amino acid; Ar1 = C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) as well as hinges PAr2-Fc-PAr1 (Ar1 = C6H5, 4-C6H4F and Ar2 = 2,4,6-C6H2Me3) were studied with respect to the reductive PET. The PET driving force (−GET) in dyads increases with the increasing electron withdrawing character of Ar substituents. Additionally, intramolecular energy transfer between porphyrins PAr1 and PAr2 is feasible in the hinges via the Förster mechanism.rn