2 resultados para pharmaceutical drugs
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Fine powders commonly have poor flowability and dispersibility due to interparticle adhesion that leads to formation of agglomerates. Knowing about adhesion in particle collectives is indispensable to gain a deeper fundamental understanding of particle behavior in powders. Especially in pharmaceutical industry a control of adhesion forces in powders is mandatory to improve the performance of inhalation products. Typically the size of inhalable particles is in the range of 1 - 5 µm. In this thesis, a new method was developed to measure adhesion forces of particles as an alternative to the established colloidal probe and centrifuge technique, which are both experimentally demanding, time consuming and of limited practical applicability. The new method is based on detachment of individual particles from a surface due to their inertia. The required acceleration in the order of 500 000 g is provided by a Hopkinson bar shock excitation system and measured via laser vibrometry. Particle detachment events are detected on-line by optical video microscopy. Subsequent automated data evaluation allows obtaining a statistical distribution of particle adhesion forces. To validate the new method, adhesion forces for ensembles of single polystyrene and silica microspheres on a polystyrene coated steel surface were measured under ambient conditions. It was possible to investigate more than 150 individual particles in one experiment and obtain adhesion values of particles in a diameter range of 3 - 13 µm. This enables a statistical evaluation while measuring effort and time are considerably lower compared to the established techniques. Measured adhesion forces of smaller particles agreed well with values from colloidal probe measurements and theoretical predictions. However, for the larger particles a stronger increase of adhesion with diameter was observed. This discrepancy might be induced by surface roughness and heterogeneity that influence small and large particles differently. By measuring adhesion forces of corrugated dextran particles with sizes down to 2 µm it was demonstrated that the Hopkinson bar method can be used to characterize more complex sample systems as well. Thus, the new device will be applicable to study a broad variety of different particle-surface combinations on a routine basis, including strongly cohesive powders like pharmaceutical drugs for inhalation.
Resumo:
Iron deficiency is the most common deficiency disease worldwide with many patients who require intravenous iron. Within the last years new kind of parenteral iron complexes as well as generic preparations entered the market. There is a high demand for methods clarifying benefit to risk profiles of old and new iron complexes. It is also necessary to disclose interchangeability between originator and intended copies to avoid severe anaphylactic and anaphylactoid side reaction and assure equivalence of therapeutic effect.rnrnThe investigations presented in this work include physicochemical characterization of nine different parenteral iron containing non-biological complex drugs. rnWe developed an in-vitro assay, which allows the quantification of labile iron in the different complexes and thus it is a useful tool to estimate the pharmaclogical safety regarding iron related adverse drug events. This assay additionally allowed the estimation of complex stability by evaluation of degradation kinetics at the applied conditions.rnrnAn in-ovo study was performed to additionally compare different complexes in respect to body distribution. This in combination with complex stability information allowed the risk estimation of potential local acute and chronic reactions to iron overload.rnrnInformation obtained by the combination of the methods within this work are helpful to estimate the safety and efficacy profile of different iron containing non-biological complex drugs. rnrnPhysicochemical differences between the complexes were demonstrated in respect to size of the inorganic fraction, size and size distribution of the complete particles, structure of the inorganic iron fraction, morphology of the complexes and charge of the complexes. And furthermore significant differences in the biological behavior of different complexes were demonstrated. rnrnThe combination of complex stability and biodistribution as well as the combination of structure, size and stability represent helpful tools for the physicochemical characterization of iron containing non-biological complex drugs and for the estimation of pharmacological safety. This work thus represents an up to date summary of some relevant methods for the characterization of intravenous iron complex drugs in respect to pharmaceutical quality, pharmacological safety and aspects of efficacy. rnrnProspectively, it is worthwhile that the methods within this work will contribute to the development and/or characterization of iron containing nanoparticular formulations with beneficial efficacy and safety profiles.rn