4 resultados para perovskites
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Mit dem System KCo2-xCuxS2 wurde ein neues magnetoresistives System gefunden. Der negative Magnetowiderstand ist mit der Größenordnung von 10 % in 8 Tesla bei 4 K klein im Vergleich zu Mangan-Perowskiten, jedoch eindeutig intrinsisch.Die magnetische Struktur des Thiospinells Fe0.5Cu0.5Cr2S4 konnte durch Neutronenbeugung, Mößbauer-Spektroskopie sowie begleitende Bandstrukturrechnungen aufgeklärt werden. Ein negativen Magnetowiderstand von 5,5 % nahe der Curie-Temperatur in Magnetfeldern von 8 Tesla bei der isostrukturellen eisenreichen Verbindung Fe0.75Cu0.25Cr2S4 wurde gefunden.Die intermetallischen Verbindungen des Gadoliniums weisen alle hohe negative Magnetowiderstände bei TC auf. Sowohl bei GdAl2 als auch bei GdPdP und GdPtP werden Widerstandsabsenkungen in 8 Tesla beobachtet, die bei ~1,5 TC 4 % erreichen und bis zu Temperaturen von 5 K über 6 % liegen. Während der Transportmechanismus in GdAl2 offenbar auf einer direkten Gd-Gd Wechselwirkung beruht, ist bei GdPdP und GdPtP bei tiefen Temperaturen ein nicht eindeutiges Verhalten beobachtbar. Ein Einfluss von Fremdphasen kann jedoch ausgeschlossen werden.Unter den metallreichen Phosphiden hexagonaler Struktur zeigt Fe2P große negative MR-Effekte von 7 % schon bei Raumtemperatur in hohen Feldern. Nahe der ferromagnetischen Ordnung reagiert die Verbindung auf äußere Felder bei niedrigen Feldstärken von weniger als 2 Tesla mit einer Erhöhung der Leitfähigkeit um 10 bis 11 %.
Resumo:
Gegenstand dieser Arbeit war die Untersuchung von metallischen gemischtvalenten Manganaten und magnetischen Doppelperowskiten. Aufgrund ihres großen negativen Magnetowiderstandes (MW) sind diese halbmetallischen Oxide interessant für mögliche technische Anwendungen, z.B. als Leseköpfe in Festplatten. Es wurden die kristallographischen, elektronischen und magnetischen Eigenschaften von epitaktischen Dünnschichten und polykristallinen Pulverproben bestimmt.Epitaktische Dünnschichten der Verbindungen La0.67Ca0.33MnO3 und La0.67Sr0.33MnO3 wurdenmit Kaltkathodenzerstäubung und Laserablation auf einkristallinen Substraten wie SrTiO3abgeschieden. Mit Hall-Effekt Messungen wurde ein Zusammenbruch der Ladungsträgerdichte bei der Curie-Temperatur TC beobachtet.Mit dem Wechsel des Dotierungsatoms A von Ca (TC=232 K) zu Sr (TC=345 K)in La0.67A0.33MnO3 konnte die Feldsensitivität des Widerstandes bei Raumtemperatur gesteigert werden. Um die Sensitivität weiter zu erhöhen wurde die hohe Spinpolarisation von nahezu 100% in Tunnelexperimenten ausgenutzt. Dazu wurden biepitaktische La0.67Ca0.33MnO3 Schichten auf SrTiO3 Bikristallsubstraten hergestellt. Die Abhängigkeit des Tunnelmagnetowiderstandes (TMW) vom magnetischen Feld, Temperatur und Strum war ein Schwerpunkt der Untersuchung. Mittels spinpolarisierten Tunnelns durch die künstliche Korngrenze konnte ein hysteretischer TMW von 70% bei 4 K in kleinen Magnetfeldern von 120 Oe gemessen werden. Eine weitere magnetische Oxidverbindung, der Doppelperowskit Sr2FeMoO6 miteine Curie-Temperatur oberhalb 400 K und einem großen MW wurde mittels Laserablation hergestellt. Die Proben zeigten erstmals das Sättigunsmoment, welches von einer idealen ferrimagnetischen Anordnung der Fe und Mo Ionen erwartet wird. Mit Hilfe von Magnetotransportmessungen und Röntgendiffraktometrie konnte eine Abhängigkeit zwischen Kristallstruktur (Ordnung oder Unordnung im Fe, Mo Untergitter) und elektronischem Transport (metallisch oder halbleitend) aufgedeckt werden.Eine zweiter Doppelperowskit Ca2FeReO6 wurde im Detail als Pulverprobe untersucht. Diese Verbindung besitzt die höchste Curie-Temperatur von 540 K, die bis jetzt in magnetischen Perowskiten gefunden wurde. Mit Neutronenstreuung wurde eine verzerrte monoklinische Struktur und eine Phasenseparation aufgedeckt.
Resumo:
In the course of this work the effect of metal substitution on the structural and magnetic properties of the double perovskites Sr2MM’O6 (M = Fe, substituted by Cr, Zn and Ga; M’ = Re, substituted by Sb) was explored by means of X-ray diffraction, magnetic measurements, band structure calculations, Mößbauer spectroscopy and conductivity measurements. The focus of this study was the determination of (i) the kind and structural boundary conditions of the magnetic interaction between the M and M’ cations and (ii) the conditions for the principal application of double perovskites as spintronic materials by means of the band model approach. Strong correlations between the electronic, structural and magnetic properties have been found during the study of the double perovskites Sr2Fe1-xMxReO6 (0 < x < 1, M = Zn, Cr). The interplay between van Hove-singularity and Fermi level plays a crucial role for the magnetic properties. Substitution of Fe by Cr in Sr2FeReO6 leads to a non-monotonic behaviour of the saturation magnetization (MS) and an enhancement for substitution levels up to 10 %. The Curie temperatures (TC) monotonically increase from 401 to 616 K. In contrast, Zn substitution leads to a continuous decrease of MS and TC. The diamagnetic dilution of the Fe-sublattice by Zn leads to a transition from an itinerant ferrimagnetic to a localized ferromagnetic material. Thus, Zn substitution inhibits the long-range ferromagnetic interaction within the Fe-sublattice and preserves the long-range ferromagnetic interaction within the Re-sublattice. Superimposed on the electronic effects is the structural influence which can be explained by size effects modelled by the tolerance factor t. In the case of Cr substitution, a tetragonal – cubic transformation for x > 0.4 is observed. For Zn substituted samples the tetragonal distortion linearly increases with increasing Zn content. In order to elucidate the nature of the magnetic interaction between the M and M’ cations, Fe and Re were substituted by the valence invariant main group metals Ga and Sb, respectively. X-ray diffraction reveals Sr2FeRe1-xSbxO6 (0 < x < 0.9) to crystallize without antisite disorder in the tetragonal distorted perovskite structure (space group I4/mmm). The ferrimagnetic behaviour of the parent compound Sr2FeReO6 changes to antiferromagnetic upon Sb substitution as determined by magnetic susceptibility measurements. Samples up to a doping level of 0.3 are ferrimagnetic, while Sb contents higher than 0.6 result in an overall antiferromagnetic behaviour. 57Fe Mößbauer results show a coexistence of ferri- and antiferromagnetic clusters within the same perovskite-type crystal structure in the Sb substitution range 0.3 < x < 0.8, whereas Sr2FeReO6 and Sr2FeRe0.9Sb0.1O6 are “purely” ferrimagnetic and Sr2FeRe0.1Sb0.9O6 contains antiferromagnetically ordered Fe sites only. Consequently, a replacement of the Re atoms by a nonmagnetic main group element such as Sb blocks the double exchange pathways Fe–O–Re(Sb)–O–Fe along the crystallographic axis of the perovskite unit cell and destroys the itinerant magnetism of the parent compound. The structural and magnetic characterization of Sr2Fe1-xGaxReO6 (0 < x < 0.7) exhibit a Ga/Re antisite disorder which is unexpected because the parent compound Sr2FeReO6 shows no Fe/Re antisite disorder. This antisite disorder strongly depends on the Ga content of the sample. Although the X-ray data do not hint at a phase separation, sample inhomogeneities caused by a demixing are observed by a combination of magnetic characterization and Mößbauer spectroscopy. The 57Fe Mößbauer data suggest the formation of two types of clusters, ferrimagnetic Fe- and paramagnetic Ga-based ones. Below 20 % Ga content, Ga statistically dilutes the Fe–O–Re–O–Fe double exchange pathways. Cluster formation begins at x = 0.2, for 0.2 < x < 0.4 the paramagnetic Ga-based clusters do not contain any Fe. Fe containing Ga-based clusters which can be detected by Mößbauer spectroscopy firstly appear for x = 0.4.