8 resultados para partition in micellar phase
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
Die vorliegende Arbeit beschäftigte sich mit der Immobilisierung von Postmetallocenen auf einem organischen Trägermaterial für die heterogene Ethenpolymerisation. Dabei konnte gezeigt werden, dass sich mit nukleophilen Gruppen funktionalisierte Latexpartikel als Trägermaterial für empfindliche Bis(phenoxyimin)titankatalysatoren eignen. Durch geschickte Kombination aus Trägermaterial, Katalysator und Cokatalysator wurde ein Katalysatorsysteme erhalten, das ultrahochmolekulares Polyethylen mit einem Molekulargewicht Mw von bis zu 7.000.000 g/mol (GPC, PS-Standard) bei einer enger Molekulargewichtsverteilung von weniger als 3 erzeugt. Die erhaltenen Produktivitäten erreichten dabei die Anforderungen an industriellen Katalysatorsystemen. Erstaunlich war, dass nukleophile Gruppen auf den Latexpartikeln, die dafür bekannt sind, dass sie den Katalysator deaktivieren können, ein wichtige Schutzfunktion für den Titankatalysator bilden. So konnte gezeigt werden, dass Pyridingruppen auf der Oberfläche der Latexpartikel als Scavenger gegen Trimethylaluminium wirken, welches ansonsten den aktiven Titankomplex zersetzen würde. An ausgewählten Systemen auf der Basis unterschiedlicher Postmetallocene und einem Metallocen für die Ethenpolymerisation wurde durch Anwendung verschiedener Methoden das Polymerisationsverhalten der Latex-geträgerten Katalysatorsysteme untersucht. Eine Methode war die so genannte Videomikroskopie, bei der in Gasphase Ethen polymerisiert wird und so das Wachstumsverhalten der Katalysatorpartikel analysiert werden kann. In Kombination mit einer kinetischen Kontrolle des Monomerumsatzes in Suspensionspolymerisation, konnte gezeigt werden, dass die auf Latexpartikel geträgerten Katalysatorsysteme ein anderes Polymerisationsverhalten besitzen wie in der Literatur beschriebene Silica-geträgerte Katalysatoren. Dies kann auf die unterschiedliche Beschaffenheit des Trägermaterials zurückgeführt werden. Während das harte Silica-Material Monomer nur in den Poren aufnimmt und so rasch nach Beginn der Polymerisation in eine diffusionskontrollierte Polymerisation übergeht, quillt das organische Trägermaterial mit dem Monomeren an und kann den aktiven Katalysator damit bedienen bis weiteres Monomer von außen in das Katalysatorpartikel nach diffundiert ist. Durch die weiche Beschaffenheit der organischen Latexpartikel kann das entstehende Polymer das Katalysatorpartikel außerdem leicht auseinandertreiben werden. Die Polymerisation kann so im ganzen Katalysatorpartikel beginnen, während das Silica-Trägermaterial nur langsam von außen nach innen fragmentieren kann.
Resumo:
Einer der Hauptschwerpunkte der Arbeit lag in der Entwicklung einer spezies-spezifischen und einer spezies-unspezifischen GC-ICP-Q-MSIVA von Schwefelspezies in Petroprodukten. Es wurden hierzu Indikatoren, ausgehend von elementarem 34S-angereichertem Schwefel, im Mikromaßstab synthetisiert. Für die spezies-spezifische GC-ICP-Q-MSIVA wurde die erstmalige Synthese von 34S-markiertem Thiophen, Dibenzothiophen und 4-Methyldibenzothiophen verwirklicht. Als Indikatorsynthese für die spezies-unspezifische GC-ICP-Q-MSIVA erfolgte die erstmalige Darstellung von 34S-angereichertem Dimethyldisulid. Mit Hilfe der synthetisierten Verbindungen wurden spezies-spezifische und spezies-unspezifische massenspektrometrische Isotopenverdünnungsanalysen von Schwefelspezies in Petroprodukten durchgeführt. Vor allen GC-ICP-Q-MSIVA-Analysen erfolgte eine umfangreiche Speziesidentifizierung durch Aufstockexperimente mit kommerziell erhältlichen Standards und mit einem mit der GC gekoppelten Elektronenstoß (EI)-MS. Beide ICP-Q-MS Methoden zeichnen sich durch sehr niedrige Nachweisgrenzen (7 ng S/g) aus, welche auch eine Anwendbarkeit auf tiefentschwefelte Kraftstoffe garantieren. Mit der spezies-unspezifischen GC-ICP-Q-MSIVA ist neben einer Speziesanalyse auch eine Gesamtschwefelanalyse durch Aufsummierung aller in der Probe vorhandenen Spezies möglich. Es wurde im Rahmen dieser Arbeit auch der Einfluss möglicher Empfindlichkeitsänderungen des ICP-Q-MS durch koeluierende Kohlenwasserstoffe überprüft, wobei diese erwartungsgemäß auf das Ergebnis der spezies-spezifischen und spezies-unspezifischen GC-ICP-Q-MSIVA keinerlei Einfluss haben. Der zweite Hauptschwerpunkt der Arbeit lag auf der Ausarbeitung routinefähiger, schneller und zuverlässiger Methoden zur Gesamtelementspurenanalytik von Schwefel und Schwermetallen in Erdölen und Petroprodukten. Für die Gesamtschwefelanalyse wurde eine MSIVA nach thermaler Verdampfung mit 34S-markierten Dibenzothiophen als Indikator entwickelt. Die neu entwickelte Methode erlaubt eine sehr schnelle Bestimmung des Gesamtschwefelgehalts, wobei die eigentliche Messung des Isotopenverhältnisses innerhalb von Sekunden nach der Injektion der Probe erfolgt. Weiterhin zeichnet sich die Methode durch Robustheit und eine niedrige Nachweisgrenze (40 ng S/g) aus. Für die Analyse von Schwermetallen wurden erstmals Möglichkeiten einer direkten MSIVA von Erdölproben ohne zeitraubenden, kontaminationsträchtigen Aufschluss bzw. die schwierige Erzeugung einer Mikroemulsion zwischen hydrophober Probe und wässrigem Indikator entwickelt. Um eine homogene Verteilung des Indikators in der hydrophoben Probe zu ermöglichen, musste ausgehend von den zur Verfügung stehenden wässrigen Indikatorlösungen, eine Überführung des Indikators in ein organisches Lösungsmittel erfolgen. Hierzu wurde der jeweilige Metallindikator unter Komplexierung aus wässrigen Metallindikatorlösungen extrahiert. Für die Analyse der mit diesen Indikatorlösungen in organischer Phase versetzten Proben wurden zwei alternative Methoden ausgearbeitet. Bei der mit der Laserablation (LA) kombinierten ICP-SF-MSIVA wird die isotopenverdünnte Probe aus einer eigens für diesen Zweck entwickelten Probenhalterung ablatiert und so dem ICP-SF-MS zugeführt wird. Bei zeitlich sich verändernden Intensitäten der gemessenen Isotope werden aber reproduzierbare und konstante Isotopenverhältnisse erhalten. Im Falle einer homogenen Verteilung der Metallspuren wurde eine hervorragende Übereinstimmung mit Vergleichsmethoden und einem Referenzmaterial festgestellt. Im Falle einer heterogenen partikulären Verteilung der Metallspuren, wie sie z.B. bei Eisenspuren in den Erdölen vorlag, ist die Anwendbarkeit der LA-ICP-SF-MSIVA aufgrund des kleinen Probenvolumens (20 µL) jedoch begrenzt. Als Alternative zur LA-ICP-SF-MSIVA wurde ein System unter Verwendung der Fließinjektion für die Zuführung der isotopenverdünnten Probe zum ICP-SF-MS ausgearbeitet. Die isotopenverdünnte Probe wird hierbei in einen Eluentenstrom von Toluol injiziert und mit Hilfe einer Total-Consumption-Zerstäuber/Sprühkammer-Einheit vollständig bei einer Flussrate von 10 µL/min in das Plasma eingebracht. Neben einer nochmaligen Verkürzung der Analysenzeit und Vereinfachung der Probenvorbereitung bietet diese Methode zusätzlich stark verbesserte Nachweisgrenzen (z.B. Ni 0,9 ng/g). Leider sind mit diesem Verfahren bis jetzt nur Ni und Mo zuverlässig bestimmbar. Das in dieser Arbeit ausgearbeitete Methodenpaket erlaubt erstmals eine breite Einführung der ICP-MSIVA als zuverlässige Methode in die Routineanalytik der Petroindustrie. Durch die bewiesene Zuverlässigkeit, den geringen Zeitaufwand und die Robustheit der Methoden steht ihrem routinemäßigen Einsatz, außer einer weitergehenderen Automatisierung einzelner Verfahrensteile, prinzipiell nichts entgegen.
Resumo:
The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.
Resumo:
Im Zentrum dieser Arbeit steht das Verhalten von geladenen kolloidalen Suspensionen in eingeschränkten Geometrien. Es wurden verschiedene keilförmige Zellen verwendet, die eine kontinuierliche Variation der Abstände zwischen den Platten ermöglichen. In Zellen mit fluid geordneten Suspensionen bei niedrigen Salzkonzentrationen akkumulieren die kolloidalen Partikel in der Keilspitze und bilden kristallin geordnete Strukturen. Systematische Experimente zu diesem Akkumulationseffekt führen zu dem Schluss, dass es um eine elektrostatischer Fallensituation handeln muss, was durch ein einfaches theoretisches, von Löwen et al vorgeschlagenes Modell bestätigt wird. In Abhängig von der Zellhöhe lässt sich in den auftretenden kristallinen Strukturen eine charakteristische Abfolge erkennen. Diese Struktursequenz wurde schon zuvor in eingeschränkten Keilgeometrien beobachtet, jedoch ermöglichen die in unseren Experimenten realisierbaren kleinen Keilwinkel die Beobachtung neuer Strukturen. Einige dieser neuen Strukturen zeigen eine exotische Anordnung die keine atomare Entsprechung besitzen. Basierend auf experimentellen Beobachtungen schlagen wir Modelle für unterschiedliche Übergangsmechanismen zwischen den verschiedenen Strukturen vor, unter der physikalisch motivierten Vorraussetzung, dass sich die Partikel wie einem hohen Druck unterworfene harte Kugeln verhalten. Des Weiteren wurde eine Zelle mit variabler Höhe konstruiert, die zur Untersuchung des vollständigen Phasenverhaltens geladener, zwischen parallelen Platten eingeschlossener Kugeln dient. Die vorläufigen Ergebnisse werden mit theoretischen Prognosen verglichen.
Resumo:
This thesis reports on the realization, characterization and analysis of ultracold bosonic and fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in optical lattices can be regarded as ideal model systems to investigate quantum many-body physics. In this work interacting ensembles of bosonic 87Rb and fermionic 40K atoms are employed to study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a versatile experimental setup, whose core feature is a blue-detuned optical lattice that is combined with Feshbach resonances and a red-detuned dipole trap to allow for independent control of tunneling, interactions and external confinement. The Fermi-Hubbard model, which plays a central role in the theoretical description of strongly correlated electrons, is experimentally realized by loading interacting fermionic spin mixtures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density distribution is measured, which allows to extract the global compressibility of the many-body state as a function of interaction and external confinement. Thereby, metallic and insulating phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator. In a second series of experiments interaction effects in bosonic lattice quantum gases are analyzed. Typically, interactions between microscopic particles are described as two-body interactions. As such they are also contained in the single-band Bose-Hubbard model. However, our measurements demonstrate the presence of multi-body interactions that effectively emerge via virtual transitions of atoms to higher lattice bands. These findings are enabled by the development of a novel atom optical measurement technique: In quantum phase revival spectroscopy periodic collapse and revival dynamics of the bosonic matter wave field are induced. The frequencies of the dynamics are directly related to the on-site interaction energies of atomic Fock states and can be read out with high precision. The third part of this work deals with mixtures of bosons and fermions in optical lattices, in which the interspecies interactions are accurately controlled by means of a Feshbach resonance. Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition is shifted towards lower lattice depths when bosons and fermions interact attractively. This observation is further analyzed by applying quantum phase revival spectroscopy to few-body systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions are proven to be modified by the presence of a fermion. This renormalization of bosonic interaction energies can explain the shift of the Mott insulator transition. The experiments of this thesis lay important foundations for future studies of quantum magnetism with fermionic spin mixtures as well as for the realization of complex quantum phases with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the single-band Hubbard model.
Resumo:
Zur Registrierung von Pharmazeutika ist eine umfassende Analyse ihres genotoxischen Potentials von Nöten. Aufgrund der Vielzahl genotoxischer Mechanismen und deren resultierenden Schäden wird ein gestaffeltes Testdesign durch die ICH-Richtlinie S2(R1) „Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1)“ definiert, um alle genotoxischen Substanzen zu identifizieren. Die Standardtestbatterie ist in der frühen Phase der Arzneimittelentwicklung aufgrund des geringen Durchsatzes und des Mangels an verfügbarer Substanzmenge vermindert anwendbar. Darüber hinaus verfügen in vitro Genotoxizitätstests in Säugerzellen über eine relativ geringe Spezifität. Für eine vollständige Sicherheitsbeurteilung wird eine in vivo Testung auf Kanzerogenität benötigt. Allerdings sind diese Testsysteme kosten- und zeitintensiv. Aufgrund dessen zielen neue Forschungsansätze auf die Verbesserung der Prädiktivität und die Erfassung des genotoxischen Potentials bereits in der frühen Phase der Arzneimittelentwicklung ab. Die high content imaging (HCI)-Technologie offeriert einen Ansatz zur Verbesserung des Durchsatzes verglichen mit der Standardtestbatterie. Zusätzlich hat ein Zell-basiertes Modell den Vorteil Daten relativ schnell bei gleichzeitig geringem Bedarf an Substanzmenge zu generieren. Demzufolge ermöglichen HCI-basierte Testsysteme eine Prüfung in der frühen Phase der pharmazeutischen Arzneimittelentwicklung. Das Ziel dieser Studie ist die Entwicklung eines neuen, spezifischen und sensitiven HCI-basierten Testsytems für Genotoxine und Progenotoxine in vitro unter Verwendung von HepG2-Zellen gewesen. Aufgrund ihrer begrenzten metabolischen Kapazität wurde ein kombiniertes System bestehend aus HepG2-Zellen und einem metabolischen Aktivierungssystem zur Testung progenotoxischer Substanzen etabliert. Basierend auf einer vorherigen Genomexpressionsprofilierung (Boehme et al., 2011) und einer Literaturrecherche wurden die folgenden neun unterschiedlichen Proteine der DNA-Schadensantwort als putative Marker der Substanz-induzierten Genotoxizität ausgewählt: p-p53 (Ser15), p21, p-H2AX (Ser139), p-Chk1 (Ser345) p-ATM (Ser1981), p-ATR (Ser428), p-CDC2 (Thr14/Tyr15), GADD45A und p-Chk2 (Thr68). Die Expression bzw. Aktivierung dieser Proteine wurde 48 h nach Behandlung mit den (pro-) genotoxischen Substanzen (Cyclophosphamid, 7,12-Dimethylbenz[a]anthracen, Aflatoxin B1, 2-Acetylaminofluoren, Methylmethansulfonat, Actinomycin D, Etoposid) und den nicht-genotoxischen Substanzen (D-Mannitol, Phenforminhydrochlorid, Progesteron) unter Verwendung der HCI-Technologie ermittelt. Die beste Klassifizierung wurde bei Verwendung der folgenden fünf der ursprünglichen neun putativen Markerproteine erreicht: p-p53 (Ser15), p21, p-H2AX (Ser139), p-Chk1 (Ser345) und p-ATM (Ser1981). In einem zweiten Teil dieser Arbeit wurden die fünf ausgewählten Proteine mit Substanzen, welche von dem European Centre for the Validation of Alternative Methods (ECVAM) zur Beurteilung der Leistung neuer oder modifizierter in vitro Genotoxizitätstests empfohlen sind, getestet. Dieses neue Testsystem erzielte eine Sensitivität von 80 % und eine Spezifität von 86 %, was in einer Prädiktivität von 84 % resultierte. Der synergetische Effekt dieser fünf Proteine ermöglicht die Identifizierung von genotoxischen Substanzen, welche DNA-Schädigungen durch eine Vielzahl von unterschiedlichen Mechanismen induzieren, mit einem hohen Erfolg. Zusammenfassend konnte ein hochprädiktives Prüfungssystem mit metabolischer Aktivierung für ein breites Spektrum potenziell genotoxischer Substanzen generiert werden, welches sich aufgrund des hohen Durchsatzes, des geringen Zeitaufwandes und der geringen Menge benötigter Substanz zur Substanzpriorisierung und -selektion in der Phase der Leitstrukturoptimierung eignet und darüber hinaus mechanistische Hinweise auf die genotoxische Wirkung der Testsubstanz liefert.
Resumo:
In der vorliegenden Doktorarbeit werden neue, mikrofluidische Verfahren, zur Durchführung chemischer Reaktionen in mehrphasigen Systemen präsentiert. rnDas Einschließen von Reaktionspartnern in einzelne Segmente, deren Volumina im Bereich von Mikro- bis Femtoliter liegen und die dadurch erzeugten enormen, spezifischen Oberflächen, ermöglichen Massentransportprozesse über die Phasengrenzfläche zwischen einzelnen Segmenten, drastisch zu intensivieren. Aufgrund geringer räumlicher Ausdehnungen einzelner Kompartimente und durch vorherrschende, zirkulierende Strömungen in den einzelnen Abschnitten, sind Diffusions- und Konvektionsprozesse in diesen rasch, sodass an der Grenzfläche gebildete, reaktive Intermediate in sehr kurzen Zeitintervallen umgesetzt werden können. rnrn