26 resultados para particle dispersion
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die vorliegende Arbeit ist im Zuge des DFG Projektes Spätpleistozäne, holozäne und aktuelle Geomorphodynamik in abflusslosen Becken der Mongolischen Gobi´´ entstanden. Das Arbeitsgebiet befindet sich in der südlichen Mongolei im nördlichen Teil der Wüste Gobi. Neben einigen Teilen der Sahara (Heintzenberg, 2009), beispielsweise das Bodélé Becken des nördlichen Tschads (z.B. Washington et al., 2006a; Todd et al., 2006; Warren et al., 2007) wird Zentralasien als ein Hauptliefergebiet für Partikel in die globale Zirkulation der Atmosphäre gesehen (Goudie, 2009). Hauptaugenmerk liegt hierbei besonders auf den abflusslosen Becken und deren Sedimentablagerungen. Die, der Deflation ausgesetzten Flächen der Seebecken, sind hauptsächliche Quelle für Partikel die sich in Form von Staub respektive Sand ausbreiten. Im Hinblick auf geomorphologische Landschaftsentwicklung wurde der Zusammenhang von Beckensedimenten zu Hangdepositionen numerisch simuliert. Ein von Grunert and Lehmkuhl (2004) publiziertes Model, angelehnt an Ideen von Pye (1995) wird damit in Betracht gezogen. Die vorliegenden Untersuchungen modellieren Verbreitungsmechanismen auf regionaler Ebene ausgehend von einer größeren Anzahl an einzelnen punktuellen Standorten. Diese sind repräsentativ für die einzelnen geomorphologischen Systemglieder mit möglicherweise einer Beteiligung am Budget aeolischer Geomorphodynamik. Die Bodenbedeckung durch das charakteristische Steinpflaster der Gobi - Region, sowie unter anderem Korngrößenverteilungen der Oberflächensedimente wurden untersucht. Des Weiteren diente eine zehnjährige Zeitreihe (Jan 1998 bis Dez 2007) meteorologischer Daten als Grundlage zur Analyse der Bedingungen für äolische Geomorphodynamik. Die Daten stammen von 32 staatlichen mongolischen Wetterstationen aus der Region und Teile davon wurden für die Simulationen verwendet. Zusätzlich wurden atmosphärische Messungen zur Untersuchung der atmosphärischen Stabilität und ihrer tageszeitlichen Variabilität mit Mess-Drachenaufstiegen vorgenommen. Die Feldbefunde und auch die Ergebnisse der Laboruntersuchungen sowie der Datensatz meteorologischer Parameter dienten als Eingangsparameter für die Modellierungen. Emissionsraten der einzelnen Standorte und die Partikelverteilung im 3D Windfeld wurden modelliert um die Konvektivität der Beckensedimente und Hangdepositionen zu simulieren. Im Falle hoher mechanischer Turbulenz der bodennahen Luftschicht (mit einhergehender hoher Wind Reibungsgeschwindigkeit), wurde generell eine neutrale Stabilität festgestellt und die Simulationen von Partikelemission sowie deren Ausbreitung und Deposition unter neutraler Stabilitätsbedingung berechnet. Die Berechnung der Partikelemission wurde auf der Grundlage eines sehr vereinfachten missionsmodells in Anlehnung an bestehende Untersuchungen (Laurent et al., 2006; Darmenova et al., 2009; Shao and Dong, 2006; Alfaro, 2008) durchgeführt. Sowohl 3D Windfeldkalkulationen als auch unterschiedliche Ausbreitungsszenarien äolischer Sedimente wurden mit dem kommerziellen Programm LASAT® (Lagrange-Simulation von Aerosol-Transport) realisiert. Diesem liegt ein Langargischer Algorithmus zugrunde, mittels dessen die Verbreitung einzelner Partikel im Windfeld mit statistischer Wahrscheinlichkeit berechnet wird. Über Sedimentationsparameter kann damit ein Ausbreitungsmodell der Beckensedimente in Hinblick auf die Gebirgsfußflächen und -hänge generiert werden. Ein weiterer Teil der Untersuchungen beschäftigt sich mit der geochemischen Zusammensetzung der Oberflächensedimente. Diese Proxy sollte dazu dienen die simulierten Ausbreitungsrichtungen der Partikel aus unterschiedlichen Quellregionen nach zu verfolgen. Im Falle der Mongolischen Gobi zeigte sich eine weitestgehende Homogenität der Minerale und chemischen Elemente in den Sedimenten. Laser Bebohrungen einzelner Sandkörner zeigten nur sehr leichte Unterschiede in Abhängigkeit der Quellregionen. Die Spektren der Minerale und untersuchten Elemente deuten auf graitische Zusammensetzungen hin. Die, im Untersuchungsgebiet weit verbreiteten Alkali-Granite (Jahn et al., 2009) zeigten sich als hauptverantwortlich für die Sedimentproduktion im Untersuchungsgebiet. Neben diesen Mineral- und Elementbestimmungen wurde die Leichtmineralfraktion auf die Charakteristik des Quarzes hin untersucht. Dazu wurden Quarzgehalt, Kristallisation und das Elektronen-Spin-Resonanz Signal des E’1 - Centers in Sauerstoff Fehlstellungen des SiO2 Gitters bestimmt. Die Untersuchungen sind mit dem Methodenvorschlag von Sun et al. (2007) durchgeführt worden und sind prinzipiell gut geeignet um Herkunftsanalysenrndurchzuführen. Eine signifikante Zuordnung der einzelnen Quellgebiete ist jedoch auch in dieser Proxy nicht zu finden gewesen.
Resumo:
Die vorliegende Arbeit untersucht die Struktur und Zusammensetzung der untersten Atmosphäre im Rahmen der PARADE-Messkampagne (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) am Kleinen Feldberg in Deutschland im Spätsommer 2011. Dazu werden Messungen von meteorologischen Grundgrößen (Temperatur, Feuchte, Druck, Windgeschwindigkeit und -richtung) zusammen mit Radiosonden und flugzeuggetragenen Messungen von Spurengasen (Kohlenstoffmonoxid, -dioxid, Ozon und Partikelanzahlkonzentrationen) ausgewertet. Ziel ist es, mit diesen Daten, die thermodynamischen und dynamischen Eigenschaften und deren Einfluss auf die chemische Luftmassenzusammensetzung in der planetaren Grenzschicht zu bestimmen. Dazu werden die Radiosonden und Flugzeugmessungen mit Lagrangeschen Methoden kombiniert und es wird zwischen rein kinematischen Modellen (LAGRANTO und FLEXTRA) sowie sogenannten Partikeldispersionsmodellen (FLEXPART) unterschieden. Zum ersten Mal wurde im Rahmen dieser Arbeit dabei auch eine Version von FLEXPART-COSMO verwendet, die von den meteorologischen Analysefeldern des Deutschen Wetterdienstes angetrieben werden. Aus verschiedenen bekannten Methoden der Grenzschichthöhenbestimmung mit Radiosondenmessungen wird die Bulk-Richardson-Zahl-Methode als Referenzmethode verwendet, da sie eine etablierte Methode sowohl für Messungen und als auch Modellanalysen darstellt. Mit einer Toleranz von 125 m, kann zu 95 % mit mindestens drei anderen Methoden eine Übereinstimmung zu der ermittelten Grenzschichthöhe festgestellt werden, was die Qualität der Grenzschichthöhe bestätigt. Die Grenzschichthöhe variiert während der Messkampagne zwischen 0 und 2000 m über Grund, wobei eine hohe Grenzschicht nach dem Durchzug von Kaltfronten beobachtet wird, hingegen eine niedrige Grenzschicht unter Hochdruckeinfluss und damit verbundener Subsidenz bei windarmen Bedingungen im Warmsektor. Ein Vergleich zwischen den Grenzschichthöhen aus Radiosonden und aus Modellen (COSMO-DE, COSMO-EU, COSMO-7) zeigt nur geringe Unterschiede um -6 bis +12% während der Kampagne am Kleinen Feldberg. Es kann allerdings gezeigt werden, dass in größeren Simulationsgebieten systematische Unterschiede zwischen den Modellen (COSMO-7 und COSMO-EU) auftreten. Im Rahmen dieser Arbeit wird deutlich, dass die Bodenfeuchte, die in diesen beiden Modellen unterschiedlich initialisiert wird, zu verschiedenen Grenzschichthöhen führt. Die Folge sind systematische Unterschiede in der Luftmassenherkunft und insbesondere der Emissionssensitivität. Des Weiteren kann lokale Mischung zwischen der Grenzschicht und der freien Troposphäre bestimmt werden. Dies zeigt sich in der zeitlichen Änderung der Korrelationen zwischen CO2 und O3 aus den Flugzeugmessungen, und wird im Vergleich mit Rückwärtstrajektorien und Radiosondenprofilen bestärkt. Das Einmischen der Luftmassen in die Grenzschicht beeinflusst dabei die chemische Zusammensetzung in der Vertikalen und wahrscheinlich auch am Boden. Diese experimentelle Studie bestätigt die Relevanz der Einmischungsprozesse aus der freien Troposphäre und die Verwendbarkeit der Korrelationsmethode, um Austausch- und Einmischungsprozesse an dieser Grenzfläche zu bestimmen.
Resumo:
Die Herstellung von Polymer-Solarzellen aus wässriger Phase stellt eine attraktive Alternative zu der konventionellen lösemittelbasierten Formulierung dar. Die Vorteile der aus wässriger Lösung hergestellten Solarzellen liegen besonders in dem umweltschonenden Herstellungsprozess und in der Möglichkeit, druckbare optoelektronische Bauteile zu generieren. Die Prozessierbarkeit von hydrophoben Halbleitern im wässrigen Milieu wird durch die Dispergierung der Materialien, in Form von Nanopartikeln, erreicht. Der Transfer der Halbleiter in eine Dispersion erfolgt über die Lösemittelverdampfungsmethode. Die Idee der Verwendung von partikelbasierte Solarzellen wurde bereits umgesetzt, allerdings blieben eine genaue Charakterisierung der Partikel sowie ein umfassendes Verständnis des gesamten Fabrikationsvorgangs aus. Deshalb besteht das Ziel dieser Arbeit darin, einen detaillierten Einblick in den Herstellungsprozess von partikelbasierten Solarzellen zu erlangen, mögliche Schwächen aufzudecken, diese zu beseitigen, um so zukünftige Anwendungen zu verbessern. Zur Herstellung von Solarzellen aus wässrigen Dispersionen wurde Poly(3-hexylthiophen-2,5-diyl)/[6,6]-Phenyl-C61-Buttersäure-Methylester (P3HT/PCBM) als Donor/Akzeptor-System verwendet. Die Kernpunkte der Untersuchungen richteten sich zum einen die auf Partikelmorphologie und zum anderen auf die Generierung einer geeigneten Partikelschicht. Beide Parameter haben Auswirkungen auf die Solarzelleneffizienz. Die Morphologie wurde sowohl spektroskopisch über Photolumineszenz-Messungen, als auch visuell mittels Elektronenmikroskopie ermittelt. Auf diese Weise konnte die Partikelmorphologie vollständig aufgeklärt werden, wobei Parallelen zu der Struktur von lösemittelbasierten Solarzellen gefunden wurden. Zudem wurde eine Abhängigkeit der Morphologie von der Präparationstemperatur beobachtet, was eine einfache Steuerung der Partikelstruktur ermöglicht. Im Zuge der Partikelschichtausbildung wurden direkte sowie grenzflächenvermittelnde Beschichtungsmethoden herangezogen. Von diesen Techniken hatte sich aber nur die Rotationsbeschichtung als brauchbare Methode erwiesen, Partikel aus der Dispersion in einen homogenen Film zu überführen. Des Weiteren stand die Aufarbeitung der Partikelschicht durch Ethanol-Waschung und thermische Behandlung im Fokus dieser Arbeit. Beide Maßnahmen wirkten sich positiv auf die Effizienz der Solarzellen aus und trugen entscheidend zu einer Verbesserung der Zellen bei. Insgesamt liefern die gewonnen Erkenntnisse einen detaillierten Überblick über die Herausforderungen, welche bei dem Einsatz von wasserbasierten Dispersionen auftreten. Die Anforderungen partikelbasierter Solarzellen konnten offengelegt werden, dadurch gelang die Herstellung einer Solarzelle mit einer Effizienz von 0.53%. Dieses Ergebnis stellt jedoch noch nicht das Optimum dar und lässt noch Möglichkeiten für Verbesserungen offen.
Resumo:
Überkritisches Kohlendioxid (CO2) ist für die Polymerisation von besonderem Interesse. Die Dispersionspolymerisation von N-Vinylpyrrolidon (VP) wurde mit Polystyrol-Polydimethylsiloxan Diblockcopolymeren (PS-b-PDMS) in diesem Medium durchgeführt. Hierfür wurde ein neues Hochdrucklabor eingerichtet, eine Sichtzelle und eine neuartige Lichtstreuzelle konstruiert. Für die Durchführung von Lichtstreuexperimenten wurde der Brechungs-index von CO2 bis zu hohen Dichten an einer Reflexionsapparatur bestimmt. Mittels dynamischen Lichtstreumessungen an Polydimethylsiloxan (PDMS) in überkritischem CO2 wurden unter den untersuchten Bedingungen ein Radius bestimmt, wie er für ungestörte Knäueldimensionen erwartet wurde. Das PS-b-PDMS wurde mittels anionischer Polymerisation mit verschiedenen Blocklängen und sehr engen Molekulargewichtsverteilungen synthetisiert. Das Phasenverhalten von PS-b-PDMS wurde in überkritischem CO2 visuell und in einer VP/CO2-Mischung mittels Turbidimetrie untersucht. Das Monomer wirkt als Co-Solvens für den PDMS-Block des Stabilisators. Bei einer Konzentration von ca. 1 Gew.-% PS-b-PDMS (pro Monomer) in CO2 bei 38 MPa und 80°C wurden sphärische ca. 1µm große PVP-Partikeln synthetisiert. PS-b-PDMS ist unter diesen Bedingungen ein geeigneter Stabilisator für die Polymerisation von VP in überkritischem CO2. Bei Konzentrationen von mehr als ca. 5 Gew.-% PS-b-PDMS wurden agglomerierte Partikeln beobachtet. Die Kinetik der Partikelentstehung wurde turbidimetrisch untersucht. Bereits in der frühen Phase der Polymerisation wurde eine anwachsende Partikelgröße gefunden.
Resumo:
In recent years, new precision experiments have become possible withthe high luminosity accelerator facilities at MAMIand JLab, supplyingphysicists with precision data sets for different hadronic reactions inthe intermediate energy region, such as pion photo- andelectroproduction and real and virtual Compton scattering.By means of the low energy theorem (LET), the global properties of thenucleon (its mass, charge, and magnetic moment) can be separated fromthe effects of the internal structure of the nucleon, which areeffectively described by polarizabilities. Thepolarizabilities quantify the deformation of the charge andmagnetization densities inside the nucleon in an applied quasistaticelectromagnetic field. The present work is dedicated to develop atool for theextraction of the polarizabilities from these precise Compton data withminimum model dependence, making use of the detailed knowledge of pionphotoproduction by means of dispersion relations (DR). Due to thepresence of t-channel poles, the dispersion integrals for two ofthe six Compton amplitudes diverge. Therefore, we have suggested to subtract the s-channel dispersion integrals at zero photon energy($nu=0$). The subtraction functions at $nu=0$ are calculated through DRin the momentum transfer t at fixed $nu=0$, subtracted at t=0. For this calculation, we use the information about the t-channel process, $gammagammatopipito Nbar{N}$. In this way, four of thepolarizabilities can be predicted using the unsubtracted DR in the $s$-channel. The other two, $alpha-beta$ and $gamma_pi$, are free parameters in ourformalism and can be obtained from a fit to the Compton data.We present the results for unpolarized and polarized RCS observables,%in the kinematics of the most recent experiments, and indicate anenhanced sensitivity to the nucleon polarizabilities in theenergy range between pion production threshold and the $Delta(1232)$-resonance.newlineindentFurthermore,we extend the DR formalism to virtual Compton scattering (radiativeelectron scattering off the nucleon), in which the concept of thepolarizabilities is generalized to the case of avirtual initial photon by introducing six generalizedpolarizabilities (GPs). Our formalism provides predictions for the fourspin GPs, while the two scalar GPs $alpha(Q^2)$ and $beta(Q^2)$ have to befitted to the experimental data at each value of $Q^2$.We show that at energies betweenpion threshold and the $Delta(1232)$-resonance position, thesensitivity to the GPs can be increased significantly, as compared tolow energies, where the LEX is applicable. Our DR formalism can be used for analysing VCS experiments over a widerange of energy and virtuality $Q^2$, which allows one to extract theGPs from VCS data in different kinematics with a minimum of model dependence.
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.
Resumo:
Das Ziel dieser Arbeit besteht darin, die Möglichkeiten der Sprühtrocknung für die Generierung von Inhalationspulvern zur Therapie von Lungenkrankheiten zu nutzen. Die Erzeugung von physikalisch stabilen und leicht dispergierbaren Partikeln steht hierbei im Vordergrund. Aufgrund von physiko-chemischen Untersuchungen (Glasübergangstemperatur, Fragilität, Relaxationsverhalten, Hygroskopizität) unterschiedlicher amorpher Hilfsstoffe (Lactose, Raffinose, Dextrane, Cyclodextrine) ist für Hydroxypropyl-β-Cyclodextrin das größte Potential für die Stabilisierung eines Wirkstoffes innerhalb einer amorphen Matrix erkennbar. Sprühgetrocknete Partikel weisen im Vergleich zu strahlgemahlenen Partikeln günstigere Dispergier- und Depositionseigenschaften auf. Dies ist vorrangig auf größere Berührungsflächen zwischen strahlgemahlenen Partikeln zurückzuführen. Kugelförmige sprühgetrocknete Partikel besitzen dagegen aufgrund einer punktförmigen Berührung geringere Haftkräfte. Versuche mit unterschiedlich stark gefalteten Partikeloberflächen weisen auf geringere Haftkräfte hin, wenn sich die Partikel an Stellen geringerer Krümmungsradien berühren. Dispergierversuche in einer definierten Rohrströmung (Deagglomerator) lassen auf einen kaskadenartigen Agglomeratzerfall schließen. Durch Sprüheinbettung unterschiedlicher Modellwirkstoffe (Salbutamolsulfat, Ipratropiumbromid, Budesonid) in Hydroxypropyl-β-Cyclodextrin konnten sowohl Einzelformulierungen als auch eine Kombinationsformulierung mit allen drei Wirkstoffen erzeugt werden. Diese weisen bei einem Wirkstoffgehalt bis max. 14% selbst nach vierwöchiger Offenlagerung bei 40°C und 75% r.F. keine bzw. nur geringfügige Veränderungen in der „Fine Particle Dose“ (FPD) auf. Die „Fine Particle Fraction“ (FPF) liegt bei diesen Formulierungen im Bereich von 40% bis 75%. In Verbindung mit einem geeigneten Pack- bzw. Trockenmittel, ist hierbei mit einer physikalischen Stabilität zu rechnen, die eine sinnvolle Produktlaufzeit eines Inhalationspulvers ermöglicht. Formulierungen mit höheren Wirkstoffkonzentrationen zeigen dagegen stärkere Veränderungen nach Stresslagerung. Als Beispiel einer kristallinen Sprühtrocknungsformulierung konnte ein Pulver bestehend aus Mannitol und Budesonid erzeugt werden.
Effect of drug physicochemical properties on the release from liposomal systems in vitro and in vivo
Resumo:
Liposomes were discovered about 40 years ago by A. Bangham and since then they became very versatile tools in biology, biochemistry and medicine. Liposomes are the smallest artificial vesicles of spherical shape that can be produced from natural untoxic phospholipids and cholesterol. Liposome vesicles can be used as drug carriers and become loaded with a great variety of molecules, such as small drug molecules, proteins, nucleotides and even plasmids. Due to the variability of liposomal compositions they can be used for a large number of applications. In this thesis the β-adrenoceptor antagonists propranolol, metoprolol, atenolol and pindolol, glucose, 18F-Fluorodeoxyglucose (FDG) and Er-DTPA were used for encapsulation in liposomes, characterization and in vitro release studies. Multilamellar vesicles (MLV), large unilamellar vesicles (LUV) and smaller unilamellar vesicles (SUV) were prepared using one of the following lipids: 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC), Phospholipone 90H (Ph90H) or a mixture of DSPC and DMPC (1:1). The freeze thawing method was used for preparation of liposomes because it has three advantages (1) avoiding the use of chloroform, which is used in other methods and causes toxicity (2) it is a simple method and (3) it gives high entrapping efficiency. The percentage of entrapping efficiencies (EE) was different depending on the type and phase transition temperature (Tc) of the lipid used. The average particle size and particle size distribution of the prepared liposomes were determined using both dynamic light scattering (DLS) and laser diffraction analyzer (LDA). The average particle size of the prepared liposomes differs according to both liposomal type and lipid type. Dispersion and dialysis techniques were used for the study of the in vitro release of β-adrenoceptor antagonists. The in vitro release rate of β-adrenoceptor antagonists was increased from MLV to LUV to SUV. Regarding the lipid type, β-adrenoceptor antagonists exhibited different in vitro release pattern from one lipid to another. Two different concentrations (50 and 100mg/ml) of Ph90H were used for studying the effect of lipid concentration on the in vitro release of β-adrenoceptor antagonists. It was found that liposomes made from 50 mg/ml Ph90H exhibited higher release rates than liposomes made at 100 mg/ml Ph90H. Also glucose was encapsulated in MLV, LUV and SUV using 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC), Phospholipone 90H (Ph90H), soybean lipid (Syb) or a mixture of DSPC and DMPC (1:1). The average particle size and size distribution were determined using laser diffraction analysis. It was found that both EE and average particle size differ depending on both lipid and liposomal types. The in vitro release of glucose from different types of liposomes was performed using a dispersion method. It was found that the in vitro release of glucose from different liposomes is dependent on the lipid type. 18F-FDG was encapsulated in MLV 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC), Phospholipone 90H (Ph90H), soybean lipid (Syb) or a mixture of DSPC and DMPC (1:1). FDG-containing LUV and SUV were prepared using Ph90H lipid. The in vitro release of FDG from the different types of lipids was accomplished using a dispersion method. Results similar to that of glucose release were obtained. In vivo imaging of FDG in both uncapsulated FDG and FDG-containing MLV was performed in the brain and the whole body of rats using PET scanner. It was found that the release of FDG from FDG-containing MLV was sustained. In vitro-In vivo correlation was studied using the in vitro release data of FDG from liposomes and in vivo absorption data of FDG from injected liposomes using microPET. Erbium, which is a lanthanide metal, was used as a chelate with DTPA for encapsulation in SUV liposomes for the indirect radiation therapy of cancer. The liposomes were prepared using three different concentrations of soybean lipid (30, 50 and 70 mg/ml). The stability of Er-DTPA SUV liposomes was carried out by storage of the prepared liposomes at three different temperatures (4, 25 and 37 °C). It was found that the release of Er-DTPA complex is temperature dependent, the higher the temperature, the higher the release. There was an inverse relationship between the release of the Er-DTPA complex and the concentration of lipid.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Hydrophobisierung anorganischer Nanopartikel für die Herstellung von Nanokompositen. Aufgrund der großen, reaktiven Oberfläche neigen Nanopartikel zur Aggregation, besonders in hydrophoben Medien. Literaturbekannte Verfahren der nachträglichen Modifizierung bereits existierender Partikeln führen nur teilweise zu gut redispergierbaren Partikeln in hydrophoben Medien. Da die Hülle erst nach der Partikelbildung erzeugt wird, läßt sich die Entstehung von Primäraggregaten nicht vermeiden. Die Neuheit der in dieser Arbeit angewandten Methode ist die Bildung der Partikelhülle vor der Entstehung der Partikel. Die Fällung der Nanopartikel innerhalb wäßriger Emulsionströpfchen schließt eine vorzeitige Aggregation der Partikel aus. Eine große Anzahl unterschiedlicher anorganischer Nanopartikel wurde hergestellt, deren Größe durch Variation der Syntheseparameter beeinflußt werden konnte. Ferner war es möglich, eine breite Variationsmöglichkeit der Art der Partikelhülle darzustellen, die sich als maßgeblich für die Kompatibilität zu einer Polymermatrix herausstellte. Die Kompatibilität zur Matrix ermöglichte eine einwandfreie Dispergierung von unterschiedlichen anorganischen Nanopartikeln im Kompositmaterial. Je nach Auswahl des anorganischen Materials können verschiedene Kompositeigenschaften, wie beispielsweise optische, elektrische, magnetische oder mechanische, beeinflußt werden. In dieser Arbeit wurde der Schwerpunkt auf eine erhöhte UV-Absorption gelegt, wobei sich auch eine verbesserte Schlagzähigkeit der Nanokomposite zeigte. Durch die hervorragende Dispergierung der Nanopartikel in der Matrix waren diese Nanokomposite hochtransparent.
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
Die zwischen allen Objekten vorhandenen Wechselwirkungen können repulsiver und attraktiver Natur sein. Bei den attraktiven Kräften kommt der Bestimmung von Dispersionskräften eine besondere Bedeutung zu, da sie in allen kolloidalen Systemen vorhanden sind und entscheidenden Einfluss auf die Eigenschaften und Prozesse dieser Systeme nehmen. Eine der Möglichkeiten, Theorie und Experiment zu verbinden, ist die Beschreibung der London-Van der Waals-Wechselwirkung durch die Hamaker-Konstante, welche durch Berechnungen der Wechselwirkungsenergie zwischen Objekten erhalten werden kann. Für die Beschreibung von Oberflächenphänomenen wie Adhäsion, die in Termen der totalen potentiellen Energie zwischen Partikeln und Substrat beschrieben werden, benötigt man exakt bestimmte Hamaker-Konstanten. In der vorliegenden Arbeit wurde die asymmetrische Fluss Feld-Fluss Fraktionierung in Kombination mit einem auf dem Newton-Algorithmus basierenden Iterationsverfahren zur Bestimmung der effektiven Hamaker-Konstanten verschiedener Nanopartikeln sowie Polystyrollatex-Partikel in Toluol bzw. Wasser verwendet. Der Einfluss verschiedener Systemparameter und Partikeleigenschaften wurde im Rahmen der klassischen DLVO-Theorie untersucht.
Resumo:
In this thesis, the influence of composition changes on the glass transition behavior of binary liquids in two and three spatial dimensions (2D/3D) is studied in the framework of mode-coupling theory (MCT).The well-established MCT equations are generalized to isotropic and homogeneous multicomponent liquids in arbitrary spatial dimensions. Furthermore, a new method is introduced which allows a fast and precise determination of special properties of glass transition lines. The new equations are then applied to the following model systems: binary mixtures of hard disks/spheres in 2D/3D, binary mixtures of dipolar point particles in 2D, and binary mixtures of dipolar hard disks in 2D. Some general features of the glass transition lines are also discussed. The direct comparison of the binary hard disk/sphere models in 2D/3D shows similar qualitative behavior. Particularly, for binary mixtures of hard disks in 2D the same four so-called mixing effects are identified as have been found before by Götze and Voigtmann for binary hard spheres in 3D [Phys. Rev. E 67, 021502 (2003)]. For instance, depending on the size disparity, adding a second component to a one-component liquid may lead to a stabilization of either the liquid or the glassy state. The MCT results for the 2D system are on a qualitative level in agreement with available computer simulation data. Furthermore, the glass transition diagram found for binary hard disks in 2D strongly resembles the corresponding random close packing diagram. Concerning dipolar systems, it is demonstrated that the experimental system of König et al. [Eur. Phys. J. E 18, 287 (2005)] is well described by binary point dipoles in 2D through a comparison between the experimental partial structure factors and those from computer simulations. For such mixtures of point particles it is demonstrated that MCT predicts always a plasticization effect, i.e. a stabilization of the liquid state due to mixing, in contrast to binary hard disks in 2D or binary hard spheres in 3D. It is demonstrated that the predicted plasticization effect is in qualitative agreement with experimental results. Finally, a glass transition diagram for binary mixtures of dipolar hard disks in 2D is calculated. These results demonstrate that at higher packing fractions there is a competition between the mixing effects occurring for binary hard disks in 2D and those for binary point dipoles in 2D.
Resumo:
For the last few decades, the interest in functional nanomaterials is steadily increasing. Especially, in biomedicine the range of possible applications of multifunctional nanoparticles including dye-labeled makers and drug loaded carrier systems is extraordinary large. The incorporation of magnetic nanoparticles allows for an additional magnetic detection and manipulation. One promising system on the way to multifunctional nanomaterials is the polyorganosiloxane system. Via polycondensation of silan monomers in aqueous dispersion polyorganosiloxane nanoparticles with particle diameter between 10 and 150 nm can be synthesized. The versatile silane chemistry allows for the design of multifunctional network structures. In this work, hydrophilic iron oxide nanoparticles could be encapsulated into the polymeric particles in a highly efficient process whereat the superparamagnetic nature of the inorganic particles was restrained. The influence of different sized particles as well as the amount of the incorporated material was investigated. Using a core-shell architecture, controlled core and surface modifications could be achieved. An effective fluorescent labeling was performed via incorporation of dye-labeled monomers. Additionally, a hydrophilic surface modification was carried out via a grafting onto process of poly(ethylene glycol). Individual core and surface functionalization was achieved and the influence of the modification on the efficiency of the magnetic loading was tested. The applicability of the multifunctional particles in biological systems was proved via cellular uptake and toxicity testings. Furthermore, biofunctionalized particles were synthesized by EDC coupling using biotin and insulin.rnrn