8 resultados para metric number theory

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with calculations in manifestly Lorentz-invariant baryon chiral perturbation theory beyond order D=4. We investigate two different methods. The first approach consists of the inclusion of additional particles besides pions and nucleons as explicit degrees of freedom. This results in the resummation of an infinite number of higher-order terms which contribute to higher-order low-energy constants in the standard formulation. In this thesis the nucleon axial, induced pseudoscalar, and pion-nucleon form factors are investigated. They are first calculated in the standard approach up to order D=4. Next, the inclusion of the axial-vector meson a_1(1260) is considered. We find three diagrams with an axial-vector meson which are relevant to the form factors. Due to the applied renormalization scheme, however, the contributions of the two loop diagrams vanish and only a tree diagram contributes explicitly. The appearing coupling constant is fitted to experimental data of the axial form factor. The inclusion of the axial-vector meson results in an improved description of the axial form factor for higher values of momentum transfer. The contributions to the induced pseudoscalar form factor, however, are negligible for the considered momentum transfer, and the axial-vector meson does not contribute to the pion-nucleon form factor. The second method consists in the explicit calculation of higher-order diagrams. This thesis describes the applied renormalization scheme and shows that all symmetries and the power counting are preserved. As an application we determine the nucleon mass up to order D=6 which includes the evaluation of two-loop diagrams. This is the first complete calculation in manifestly Lorentz-invariant baryon chiral perturbation theory at the two-loop level. The numerical contributions of the terms of order D=5 and D=6 are estimated, and we investigate their pion-mass dependence. Furthermore, the higher-order terms of the nucleon sigma term are determined with the help of the Feynman-Hellmann theorem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled-cluster (CC) theory is one of the most successful approaches in high-accuracy quantum chemistry. The present thesis makes a number of contributions to the determination of molecular properties and excitation energies within the CC framework. The multireference CC (MRCC) method proposed by Mukherjee and coworkers (Mk-MRCC) has been benchmarked within the singles and doubles approximation (Mk-MRCCSD) for molecular equilibrium structures. It is demonstrated that Mk-MRCCSD yields reliable results for multireference cases where single-reference CC methods fail. At the same time, the present work also illustrates that Mk-MRCC still suffers from a number of theoretical problems and sometimes gives rise to results of unsatisfactory accuracy. To determine polarizability tensors and excitation spectra in the MRCC framework, the Mk-MRCC linear-response function has been derived together with the corresponding linear-response equations. Pilot applications show that Mk-MRCC linear-response theory suffers from a severe problem when applied to the calculation of dynamic properties and excitation energies: The Mk-MRCC sufficiency conditions give rise to a redundancy in the Mk-MRCC Jacobian matrix, which entails an artificial splitting of certain excited states. This finding has established a new paradigm in MRCC theory, namely that a convincing method should not only yield accurate energies, but ought to allow for the reliable calculation of dynamic properties as well. In the context of single-reference CC theory, an analytic expression for the dipole Hessian matrix, a third-order quantity relevant to infrared spectroscopy, has been derived and implemented within the CC singles and doubles approximation. The advantages of analytic derivatives over numerical differentiation schemes are demonstrated in some pilot applications.