7 resultados para logarithmic geometry, deformation, normal crossing, symplectic, smoothing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we give a definition of the term logarithmically symplectic variety; to be precise, we distinguish even two types of such varieties. The general type is a triple $(f,nabla,omega)$ comprising a log smooth morphism $fcolon Xtomathrm{Spec}kappa$ of log schemes together with a flat log connection $nablacolon LtoOmega^1_fotimes L$ and a ($nabla$-closed) log symplectic form $omegainGamma(X,Omega^2_fotimes L)$. We define the functor of log Artin rings of log smooth deformations of such varieties $(f,nabla,omega)$ and calculate its obstruction theory, which turns out to be given by the vector spaces $H^i(X,B^bullet_{(f,nabla)}(omega))$, $i=0,1,2$. Here $B^bullet_{(f,nabla)}(omega)$ is the class of a certain complex of $mathcal{O}_X$-modules in the derived category $mathrm{D}(X/kappa)$ associated to the log symplectic form $omega$. The main results state that under certain conditions a log symplectic variety can, by a flat deformation, be smoothed to a symplectic variety in the usual sense. This may provide a new approach to the construction of new examples of irreducible symplectic manifolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the deformation theory of pairs of an irreducible symplectic manifold X together with a Lagrangian subvariety Y in X, where the focus is on singular Lagrangian subvarieties. Among other things, Voisin's results [Voi92] are generalized to the case of simple normal crossing subvarieties; partial results are also obtained for more complicated singularities.rnAs done in Voisin's article, we link the codimension of the subspace of the universal deformation space of X parametrizing those deformations where Y persists, to the rank of a certain map in cohomology. This enables us in some concrete cases to actually calculate or at least estimate the codimension of this particular subspace. In these cases the Lagrangian subvarieties in question occur as fibers or fiber components of a given Lagrangian fibration f : X --> B. We discuss examples and the question of how our results might help to understand some aspects of Lagrangian fibrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is lively debated how eclogites find their way from deep to mid-crustal levels during exhumation. Different exhumation models for high-pressure and ultrahigh-pressure rocks were suggested in previous studies, based mainly on field observations and less on microstructural studies on the exhumed rocks. The development and improvement of electron microscopy techniques allows it, to focus interest on direct investigations of microstructures and crystallographic properties in eclogites. In this case, it is of importance to study the applicability of crystallographic measurements on eclogites for exhumation processes and to unravel which processes affect eclogite textures. Previous studies suggested a strong relationship between deformation and lattice preferred orientation (LPO) in omphacite but it is still unclear if the deformation is related to the exhumation of eclogites. This study is focused on the questions which processes affect omphacite LPO and if textural investigations of omphacite are applicable for studying eclogite exhumation. Therefore, eclogites from two examples in the Alps and in the Caledonides were collected systematically and investigated with respect to omphacite LPO by using the electron backscattered diffraction (EBSD) technique. Omphacite textures of the Tauern Window (Austria) and the Western Gneiss Region (Norway) were studied to compare lattice preferred orientation with field observations and suggested exhumation models from previous studies. The interpretation of omphacite textures, regarding the deformation regime is mainly based on numerical simulations in previous studies. Omphacite LPO patterns of the Eclogite Zone are clearly independent from any kind of exhumation process. The textures were generated during omphacite growth on the prograde path of eclogite development until metamorphic peak conditions. Field observations in the Eclogite Zone show that kinematics in garnet mica schist, surrounding the eclogites, strongly indicate an extrusion wedge geometry. Stretching lineations show top-N thrusting at the base and a top-S normal faulting with a sinistral shear component at the top of the Eclogite Zone. The different shear sense on both sides of the unit does not affect the omphacite textures in any way. The omphacite lattice preferred orientation patterns of the Western Gneiss Region can not be connected with any exhumation model. The textures were probably generated during the metamorphic peak and reflect the change from subduction to exhumation. Eclogite Zone and Western Gneiss Region differ significantly in size and especially in metamorphic conditions. While the Eclogite Zone is characterized by constant P-T conditions (600-650°C, 20-25 kbar), the Western Gneiss Region contains a wide P-T range from high- to ultrahigh pressure conditions (400-800°C, 20-35 kbar). In contrast to this, the omphacite textures of both units are very similar. This means that omphacite LPO is independent from P-T conditions and therefore from burial depth. Further, in both units, omphacite LPO is independent from grain and subgrain size as well as from any shape preferred orientation (SPO) on grain and subgrain scale. Overall, omphacite lattice preferred orientation are generated on the prograde part of omphacite development. Therefore, textural investigations on omphacite LPO are not applicable to study eclogite exhumation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis foliation boudinage and related structures have been studied based on field observations and numerical modeling. Foliation boudinage occurs in foliated rocks independent of lithology contrast. The developing structures are called ‘Foliation boudinage structures (FBSs)’ and show evidence for both ductile and brittle deformation. They are recognized in rocks by perturbations in monotonous foliation adjacent to a central discontinuity, mostly filled with vein material. Foliation boudinage structures have been studied in the Çine Massif in SW-Turkey and the Furka Pass-Urseren Zone in central Switzerland. Four common types have been distinguished in the field, named after vein geometries in their boudin necks in sections normal to the boudin axis: lozenge-, crescent-, X- and double crescent- type FBSs. Lozengetype FBSs are symmetric and characterized by lozenge-shaped veins in their boudin neck with two cusps facing opposite sides. A symmetrical pair of flanking folds occurs on the two sides of the vein. Crescent-type FBSs are asymmetric with a single smoothly curved vein in the boudin neck, with vein contacts facing to one side. X- and double crescent- type FBSs are asymmetric. The geometry of the neck veins resembles that of cuspate-lobate structures. The geometry of flanking structures is related to the shape of the veins. The veins are mostly filled with massive quartz in large single crystals, commonly associated with tourmaline, feldspar and biotite and in some cases with chlorite. The dominance of large facetted single quartz crystals and spherulitic chlorite in the veins suggest that the minerals grew into open fluidfilled space. FLAC experiments show that fracture propagation during ductile deformation strongly influences the geometry of developing veins. The cusps of the veins are better developed in the case of propagating fractures. The shape of the boudin neck veins in foliation boudinage depends on the initial orientation and shape of the fracture, the propagation behaviour of the fracture, the geometry of bulk flow, and the stage at which mineral filling takes place. A two dimensional discrete element model was used to study the progressive development of foliation boudinage structures and the behavior of visco-elastic material deformed under pure shear conditions. Discrete elements are defined by particles that are connected by visco-elastic springs. Springs can break. A number of simulations was Abstract vii performed to investigate the effect of material properties (Young’s modulus, viscosity and breaking strength) and anisotropy on the developing structures. The models show the development of boudinage in single layers, multilayers and in anisotropic materials with random mica distribution. During progressive deformation different types of fractures develop from mode I, mode II to the combination of both. Voids develop along extension fractures, at intersections of conjugate shear fractures and in small pull-apart structures along shear fractures. These patterns look similar to the natural examples. Fractures are more localized in the models where the elastic constants are low and the competence contrast is high between the layers. They propagate through layers where the constants are high and the competence contrast is relatively low. Flow localize around these fractures and voids. The patterns similar to symmetric boudinage structures and extensional neck veins (e.g. lozenge type) more commonly develop in the models with lower elastic constants and anisotropy. The patterns similar to asymmetric foliation boudinage structures (e.g. X-type) develop associated with shear fractures in the models where elastic constants and anisotropy of the materials are relatively high. In these models boudin neck veins form commonly at pull-aparts along the shear fractures and at the intersection of fractures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the generic fibre f−1(c) of a Lagrangian fibration f : X → B on a complex Poisson– variety X is smooth, compact, and connected, it is isomorphic to the compactification of a complex abelian Lie–group. For affine Lagrangian fibres it is not clear what the structure of the fibre is. Adler and van Moerbeke developed a strategy to prove that the generic fibre of a Lagrangian fibration is isomorphic to the affine part of an abelian variety.rnWe extend their strategy to verify that the generic fibre of a given Lagrangian fibration is the affine part of a (C∗)r–extension of an abelian variety. This strategy turned out to be successful for all examples we studied. Additionally we studied examples of Lagrangian fibrations that have the affine part of a ramified cyclic cover of an abelian variety as generic fibre. We obtained an embedding in a Lagrangian fibration that has the affine part of a C∗–extension of an abelian variety as generic fibre. This embedding is not an embedding in the category of Lagrangian fibrations. The C∗–quotient of the new Lagrangian fibration defines in a natural way a deformation of the cyclic quotient of the original Lagrangian fibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natürliche hydraulische Bruchbildung ist in allen Bereichen der Erdkruste ein wichtiger und stark verbreiteter Prozess. Sie beeinflusst die effektive Permeabilität und Fluidtransport auf mehreren Größenordnungen, indem sie hydraulische Konnektivität bewirkt. Der Prozess der Bruchbildung ist sowohl sehr dynamisch als auch hoch komplex. Die Dynamik stammt von der starken Wechselwirkung tektonischer und hydraulischer Prozesse, während sich die Komplexität aus der potentiellen Abhängigkeit der poroelastischen Eigenschaften von Fluiddruck und Bruchbildung ergibt. Die Bildung hydraulischer Brüche besteht aus drei Phasen: 1) Nukleation, 2) zeitabhängiges quasi-statisches Wachstum so lange der Fluiddruck die Zugfestigkeit des Gesteins übersteigt, und 3) in heterogenen Gesteinen der Einfluss von Lagen unterschiedlicher mechanischer oder sedimentärer Eigenschaften auf die Bruchausbreitung. Auch die mechanische Heterogenität, die durch präexistierende Brüche und Gesteinsdeformation erzeugt wird, hat großen Einfluß auf den Wachstumsverlauf. Die Richtung der Bruchausbreitung wird entweder durch die Verbindung von Diskontinuitäten mit geringer Zugfestigkeit im Bereich vor der Bruchfront bestimmt, oder die Bruchausbreitung kann enden, wenn der Bruch auf Diskontinuitäten mit hoher Festigkeit trifft. Durch diese Wechselwirkungen entsteht ein Kluftnetzwerk mit komplexer Geometrie, das die lokale Deformationsgeschichte und die Dynamik der unterliegenden physikalischen Prozesse reflektiert. rnrnNatürliche hydraulische Bruchbildung hat wesentliche Implikationen für akademische und kommerzielle Fragestellungen in verschiedenen Feldern der Geowissenschaften. Seit den 50er Jahren wird hydraulisches Fracturing eingesetzt, um die Permeabilität von Gas und Öllagerstätten zu erhöhen. Geländebeobachtungen, Isotopenstudien, Laborexperimente und numerische Analysen bestätigen die entscheidende Rolle des Fluiddruckgefälles in Verbindung mit poroelastischen Effekten für den lokalen Spannungszustand und für die Bedingungen, unter denen sich hydraulische Brüche bilden und ausbreiten. Die meisten numerischen hydromechanischen Modelle nehmen für die Kopplung zwischen Fluid und propagierenden Brüchen vordefinierte Bruchgeometrien mit konstantem Fluiddruck an, um das Problem rechnerisch eingrenzen zu können. Da natürliche Gesteine kaum so einfach strukturiert sind, sind diese Modelle generell nicht sonderlich effektiv in der Analyse dieses komplexen Prozesses. Insbesondere unterschätzen sie die Rückkopplung von poroelastischen Effekten und gekoppelte Fluid-Festgestein Prozesse, d.h. die Entwicklung des Porendrucks in Abhängigkeit vom Gesteinsversagen und umgekehrt.rnrnIn dieser Arbeit wird ein zweidimensionales gekoppeltes poro-elasto-plastisches Computer-Model für die qualitative und zum Teil auch quantitativ Analyse der Rolle lokalisierter oder homogen verteilter Fluiddrücke auf die dynamische Ausbreitung von hydraulischen Brüchen und die zeitgleiche Evolution der effektiven Permeabilität entwickelt. Das Programm ist rechnerisch effizient, indem es die Fluiddynamik mittels einer Druckdiffusions-Gleichung nach Darcy ohne redundante Komponenten beschreibt. Es berücksichtigt auch die Biot-Kompressibilität poröser Gesteine, die implementiert wurde um die Kontrollparameter in der Mechanik hydraulischer Bruchbildung in verschiedenen geologischen Szenarien mit homogenen und heterogenen Sedimentären Abfolgen zu bestimmen. Als Resultat ergibt sich, dass der Fluiddruck-Gradient in geschlossenen Systemen lokal zu Störungen des homogenen Spannungsfeldes führen. Abhängig von den Randbedingungen können sich diese Störungen eine Neuausrichtung der Bruchausbreitung zur Folge haben kann. Durch den Effekt auf den lokalen Spannungszustand können hohe Druckgradienten auch schichtparallele Bruchbildung oder Schlupf in nicht-entwässerten heterogenen Medien erzeugen. Ein Beispiel von besonderer Bedeutung ist die Evolution von Akkretionskeilen, wo die große Dynamik der tektonischen Aktivität zusammen mit extremen Porendrücken lokal starke Störungen des Spannungsfeldes erzeugt, die eine hoch-komplexe strukturelle Entwicklung inklusive vertikaler und horizontaler hydraulischer Bruch-Netzwerke bewirkt. Die Transport-Eigenschaften der Gesteine werden stark durch die Dynamik in der Entwicklung lokaler Permeabilitäten durch Dehnungsbrüche und Störungen bestimmt. Möglicherweise besteht ein enger Zusammenhang zwischen der Bildung von Grabenstrukturen und großmaßstäblicher Fluid-Migration. rnrnDie Konsistenz zwischen den Resultaten der Simulationen und vorhergehender experimenteller Untersuchungen deutet darauf hin, dass das beschriebene numerische Verfahren zur qualitativen Analyse hydraulischer Brüche gut geeignet ist. Das Schema hat auch Nachteile wenn es um die quantitative Analyse des Fluidflusses durch induzierte Bruchflächen in deformierten Gesteinen geht. Es empfiehlt sich zudem, das vorgestellte numerische Schema um die Kopplung mit thermo-chemischen Prozessen zu erweitern, um dynamische Probleme im Zusammenhang mit dem Wachstum von Kluftfüllungen in hydraulischen Brüchen zu untersuchen.