3 resultados para lan merkatua

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit ist motiviert durch biologische Fragestellungen bezüglich des Verhaltens von Membranpotentialen in Neuronen. Ein vielfach betrachtetes Modell für spikende Neuronen ist das Folgende. Zwischen den Spikes verhält sich das Membranpotential wie ein Diffusionsprozess X der durch die SDGL dX_t= beta(X_t) dt+ sigma(X_t) dB_t gegeben ist, wobei (B_t) eine Standard-Brown'sche Bewegung bezeichnet. Spikes erklärt man wie folgt. Sobald das Potential X eine gewisse Exzitationsschwelle S überschreitet entsteht ein Spike. Danach wird das Potential wieder auf einen bestimmten Wert x_0 zurückgesetzt. In Anwendungen ist es manchmal möglich, einen Diffusionsprozess X zwischen den Spikes zu beobachten und die Koeffizienten der SDGL beta() und sigma() zu schätzen. Dennoch ist es nötig, die Schwellen x_0 und S zu bestimmen um das Modell festzulegen. Eine Möglichkeit, dieses Problem anzugehen, ist x_0 und S als Parameter eines statistischen Modells aufzufassen und diese zu schätzen. In der vorliegenden Arbeit werden vier verschiedene Fälle diskutiert, in denen wir jeweils annehmen, dass das Membranpotential X zwischen den Spikes eine Brown'sche Bewegung mit Drift, eine geometrische Brown'sche Bewegung, ein Ornstein-Uhlenbeck Prozess oder ein Cox-Ingersoll-Ross Prozess ist. Darüber hinaus beobachten wir die Zeiten zwischen aufeinander folgenden Spikes, die wir als iid Treffzeiten der Schwelle S von X gestartet in x_0 auffassen. Die ersten beiden Fälle ähneln sich sehr und man kann jeweils den Maximum-Likelihood-Schätzer explizit angeben. Darüber hinaus wird, unter Verwendung der LAN-Theorie, die Optimalität dieser Schätzer gezeigt. In den Fällen OU- und CIR-Prozess wählen wir eine Minimum-Distanz-Methode, die auf dem Vergleich von empirischer und wahrer Laplace-Transformation bezüglich einer Hilbertraumnorm beruht. Wir werden beweisen, dass alle Schätzer stark konsistent und asymptotisch normalverteilt sind. Im letzten Kapitel werden wir die Effizienz der Minimum-Distanz-Schätzer anhand simulierter Daten überprüfen. Ferner, werden Anwendungen auf reale Datensätze und deren Resultate ausführlich diskutiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Hauptziel der Arbeit ist es, die Beziehung zwischen Fontaine Modulen und F-T-Kristall zu studieren. Im ersten Kapitel wird die Definition von Fontaine Modulen, die auf die inversen Cartier Transform setzt erinnern wir von Ogus und Vologodsky errichtet. Neben der Erinnerung an die urspruengliche Konstruktion des inversen Cartier Transform, eine direktere Konstruktion, die wir auch vorstellen von G.T. Lan, M. Sheng und K. Zuo. Darueber hinaus beweisen wir diernGleichwertigkeit der beiden Konstruktion.rnrnrnIm zweiten Kapitel werden wir uns daran erinnern, den Konstruktion von inversen Cartier Transform in der Log Einstellung von D. Schepler und verallgemeinern die Lan-Sheng-Zuo Konstruktion an dieser Einstellung. Darueber hinaus geben wir eine Definition von Log FontainernModulen. Im dritten Kapitel werden wir erinnern an die Definition von F-T-Kristall und beweisen das wichtigste Ergebnis dieser Arbeit: Sei $Y$ eine glatte $S_{nu}$-Schema, wobei $S_{nu}$ ist eine flache $W_{nu+1}(k)$-Schema, $nugeq1$, und $X/S_0$ seine Reduction modulo $p$ sein. Bei einem F-T-Kristall $(E,Phi,B)$ auf $Y$ der Breite von weniger als $p$ und let $(E_Y ,B_Y ,nabla_Y)$ die entsprechende gefilterte $O_Y$-modulen mit einer integrierbar Zusammenhang ausgestattet. Anschliesend wird die Reduktion dieses Objekt modulo $p$ definiert eine Fontaine Modulen auf $X/S_0$ im dem Sinnernder Ogus und Vologodsky.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let k := bar{F}_p for p > 2, W_n(k) := W(k)/p^n and X_n be a projective smooth W_n(k)-scheme which is W_{n+1}(k)-liftable. For all n > 1, we construct explicitly a functor, which we call the inverse Cartier functor, from a subcategory of Higgs bundles over X_n to a subcategory of flat Bundles over X_n. Then we introduce the notion of periodic Higgs-de Rham flows and show that a periodic Higgs-de Rham flow is equivalent to a Fontaine-Faltings module. Together with a p-adic analogue of Riemann-Hilbert correspondence established by Faltings, we obtain a coarse p-adic Simpson correspondence.