4 resultados para injury data quality
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Summary PhD Thesis Jan Pollmann: This thesis focuses on global scale measurements of light reactive non-methane hydrocarbon (NMHC), in the volatility range from ethane to toluene with a special focus on ethane, propane, isobutane, butane, isopentane and pentane. Even though they only occur at the ppt level (nmol mol-1) in the remote troposphere these species can yield insight into key atmospheric processes. An analytical method was developed and subsequently evaluated to analyze NMHC from the NOAA – ERSL cooperative air sampling network. Potential analytical interferences through other atmospheric trace gases (water vapor and ozone) were carefully examined. The analytical parameters accuracy and precision were analyzed in detail. It was proven that more than 90% of the data points meet the Global Atmospheric Watch (GAW) data quality objective. Trace gas measurements from 28 measurement stations were used to derive the global atmospheric distribution profile for 4 NMHC (ethane, propane, isobutane, butane). A close comparison of the derived ethane data with previously published reports showed that northern hemispheric ethane background mixing ratio declined by approximately 30% since 1990. No such change was observed for southern hemispheric ethane. The NMHC data and trace gas data supplied by NOAA ESRL were used to estimate local diurnal averaged hydroxyl radical (OH) mixing ratios by variability analysis. Comparison of the variability derived OH with directly measured OH and modeled OH mixing ratios were found in good agreement outside the tropics. Tropical OH was on average two times higher than predicted by the model. Variability analysis was used to assess the effect of chlorine radicals on atmospheric oxidation chemistry. It was found that Cl is probably not of significant relevance on a global scale.
Resumo:
Flüchtige organische Bestandteile (engl.: VOC) sind in der Atmosphäre in Spuren vorhanden, spielen aber trotzdem eine wichtige Rolle in der Luftchemie: sie beeinflussen das Ozon der Troposphäre, städtischen Smog, Oxidationskapazität und haben direkte und indirekte Auswirkungen auf die globale Klimaveränderung. Eine wichtige Klasse der VOC sind die Nicht-Methan-Kohlenwasserstoffe (engl.: NMHC), die überwiegend von anthropogenen Quellen kommen. Aus diesem Grund ist für Luftchemiker ein Messinstrument nötig, das die VOC, die NMHC eingeschlossen, mit einer höheren Zeitauflösung misst, besonders für Echtzeitmessungen an Bord eines Forschungsflugzeuges. Dafür wurde das System zur schnellen Beobachtung von organischen Spuren (engl.: FOTOS) entworfen, gebaut für den Einsatz in einem neuen Wissenschaftlichen Flugzeug, das in großen Höhen und über weite Strecken fliegt, genannt HALO. In der Folge wurde FOTOS in zwei Messkampagnen am Boden getestet. FOTOS wurde entworfen und gebaut mit einem speziell angefertigten, automatisierten, kryogenen Probensystem mit drei Fallen und einem angepassten, erworbenen schnellen GC-MS. Ziel dieses Aufbaus war es, die Vielseitigkeit zu vergrößern und das Störungspotential zu verringern, deshalb wurden keine chemischen Trocknungsmittel oder adsorbierenden Stoffe verwendet. FOTOS erreichte eine Probenfrequenz von 5.5 Minuten, während es mindestens 13 verschiedene C2- bis C5-NMHC maß. Die Drei-Sigma-Detektionsgrenze für n- und iso-Pentan wurde als 2.6 und 2.0 pptv ermittelt, in dieser Reihenfolge. Labortests bestätigten, dass FOTOS ein vielseitiges, robustes, hochautomatisiertes, präzises, genaues, empfindliches Instrument ist, geeignet für Echtzeitmessungen von VOC in Probenfrequenzen, die angemessen sind für ein Forschungsflugzeug wie HALO. Um die Leistung von FOTOS zu bestätigen, wurde vom 26. Januar bis 4. Februar 2010 ein Zwischenvergleich gemacht mit dem GC-FID-System am Meteorologischen Observatorium Hohenpeißenberg, einer WMO-GAW-globalen Station. Dreizehn verschiedene NMHC wurden innerhalb des Rahmens der GWA Data Quality Objectives (DQO) analysiert und verglichen. Mehr als 80% der Messungen von sechs C3- bis C5-NMHC erfüllten diese DQO. Diese erste Messkampagne im Feld hob die Robustheit und Messgenauigkeit von FOTOS hervor, zusätzlich zu dem Vorteil der höheren Probenfrequenz, sogar in einer Messung am Boden. Um die Möglichkeiten dieses Instrumentes im Feld zu zeigen, maß FOTOS ausgewählte leichte NMHC während einer Messkampagne im Borealen Waldgebiet, HUMPPA-COPEC 2010. Vom 12. Juli bis zum 12. August 2010 beteiligte sich eine internationale Gruppe von Instituten und Instrumenten an Messungen physikalischer und chemischer Größen der Gas- und Partikelphasen der Luft über dem Borealen Wald an der SMEAR II-Station nahe Hyyttiälä, Finnland. Es wurden mehrere Hauptpunkte von Interesse im Mischungsverhältnis der Alkane und im Isomerenverhätnis von Pentan identifiziert, insbesondere sehr unterschiedliche Perioden niedriger und hoher Variabilität, drei Rauchschwaden von Biomassen-Verbrennung von russischen Waldbränden und zwei Tage mit extrem sauberer Luft aus der Polarregion. Vergleiche der NMHC mit anderen anthropogenen Indikatoren zeigten mehrere Quellen anthropogener Einflüsse am Ort auf und erlaubten eine Unterscheidung zwischen lokalen und weiter entfernten Quellen. Auf einen minimalen natürlichen Beitrag zum 24h-Kreislauf von NOx wurde geschlussfolgert aus der Korrelation von NOx mit Alkanen. Altersschätzungen der Luftmassen durch das Isomerenverhältnis von Pentan wurden erschwert durch sich verändernde Verhältnisse der Quellen und durch Besonderheiten der Photochemie während des Sommers im hohen Norden. Diese Messungen zeigten den Wert des Messens leichter NMHC, selbst in abgelegenen Regionen, als einen zusätzlichen spezifischen Marker von anthropogenem Einfluss.
Resumo:
Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.
Resumo:
Am Mainzer Mikrotron können Lambda-Hyperkerne in (e,e'K^+)-Reaktionen erzeugt werden. Durch den Nachweis des erzeugten Kaons im KAOS-Spektrometer lassen sich Reaktionen markieren, bei denen ein Hyperon erzeugt wurde. Die Spektroskopie geladener Pionen, die aus schwachen Zweikörperzerfällen leichter Hyperkerne stammen, erlaubt es die Bindungsenergie des Hyperons im Kern mit hoher Präzision zu bestimmen. Neben der direkten Produktion von Hyperkernen ist auch die Erzeugung durch die Fragmentierung eines hoch angeregten Kontinuumszustands möglich. Dadurch können unterschiedliche Hyperkerne in einem Experiment untersucht werden. Für die Spektroskopie der Zerfallspionen stehen hochauflösende Magnetspektrometer zur Verfügung. Um die Grundzustandsmasse der Hyperkerne aus dem Pionimpuls zu berechnen, ist es erforderlich, dass das Hyperfragment vor dem Zerfall im Target abgebremst wird. Basierend auf dem bekannten Wirkungsquerschnitt der elementaren Kaon-Photoproduktion wurde eine Berechnung der zu erwartenden Ereignisrate vorgenommen. Es wurde eine Monte-Carlo-Simulation entwickelt, die den Fragmentierungsprozess und das Abbremsen der Hyperfragmente im Target beinhaltet. Diese nutzt ein statistisches Aufbruchsmodell zur Beschreibung der Fragmentierung. Dieser Ansatz ermöglicht für Wasserstoff-4-Lambda-Hyperkerne eine Vorhersage der zu erwartenden Zählrate an Zerfallspionen. In einem Pilotexperiment im Jahr 2011 wurde erstmalig an MAMI der Nachweis von Hadronen mit dem KAOS-Spektrometer unter einem Streuwinkel von 0° demonstriert, und koinzident dazu Pionen nachgewiesen. Es zeigte sich, dass bedingt durch die hohen Untergrundraten von Positronen in KAOS eine eindeutige Identifizierung von Hyperkernen in dieser Konfiguration nicht möglich war. Basierend auf diesen Erkenntnissen wurde das KAOS-Spektrometer so modifiziert, dass es als dedizierter Kaonenmarkierer fungierte. Zu diesem Zweck wurde ein Absorber aus Blei im Spektrometer montiert, in dem Positronen durch Schauerbildung abgestoppt werden. Die Auswirkung eines solchen Absorbers wurde in einem Strahltest untersucht. Eine Simulation basierend auf Geant4 wurde entwickelt mittels derer der Aufbau von Absorber und Detektoren optimiert wurde, und die Vorhersagen über die Auswirkung auf die Datenqualität ermöglichte. Zusätzlich wurden mit der Simulation individuelle Rückrechnungsmatrizen für Kaonen, Pionen und Protonen erzeugt, die die Wechselwirkung der Teilchen mit der Bleiwand beinhalteten, und somit eine Korrektur der Auswirkungen ermöglichen. Mit dem verbesserten Aufbau wurde 2012 eine Produktionsstrahlzeit durchgeführt, wobei erfolgreich Kaonen unter 0° Streuwinkel koninzident mit Pionen aus schwachen Zerfällen detektiert werden konnten. Dabei konnte im Impulsspektrum der Zerfallspionen eine Überhöhung mit einer Signifikanz, die einem p-Wert von 2,5 x 10^-4 entspricht, festgestellt werden. Diese Ereignisse können aufgrund ihres Impulses, den Zerfällen von Wasserstoff-4-Lambda-Hyperkernen zugeordnet werden, wobei die Anzahl detektierter Pionen konsistent mit der berechneten Ausbeute ist.