8 resultados para flow field

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymere Hohlstrukturen eignen sich um eine große Anzahl an Gastmolekülen zu verkapseln und bieten somit interessante Anwendungsmöglichkeiten, z.B. im Bereich kontrollierter Transportsysteme. Solche wohl definierten Strukturen lassen sich mittels des Sol-Gel-Prozesses durch Hydrolyse und Kondensation von Dialkoxydialkyl- und Trialkoxyalkylsilanen in wässriger Dispersion in Gegenwart von Tensiden synthetisieren. Die Methode ermöglicht den Aufbau verschiedener Kern-Schale-Systeme, inklusive Hohlkugelarchitekturen, mit Durchmessern von 10-100 nm. Abhängig von den eingestellten Parametern wird dabei eine bimodale Größenverteilung der Partikel beobachtet. Die bimodalen Proben wurden mittels der circularen asymmetrischen Fluss Feld-Fluss Fraktionierung (CAFFFE) fraktioniert. NMR-Untersuchungen deuten darauf hin, dass die Ursache der bimodalen Verteilung in der Synthese der Kerndispersion zu liegen scheint. MALDI-TOF-MS und GC-Messungen zeigen, dass der Kern der größeren Partikel ausschließlich aus zyklischen Kondensationsprodukten besteht, während im Kernmaterial der kleineren Partikel zusätzlich noch lineare Polydimethylsiloxan-Ketten vorhanden sind. Unter der Annahme, dass PDMS als Ultrahydrophob wirkt, lässt sich die Ostwaldreifung als Ursache der Bimodalität ausmachen. Eine Erhöhung des PDMS-Anteils, der zur Stabilisierung gegen den Reifungsprozess notwendig ist, führt zu einer monomodalen Verteilung der erhaltenen Partikel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Der Begriff "Bannerwolke" bezeichnet ein eindrucksvolles Phänomen aus dem Bereich der Gebirgsmeteorologie. Bannerwolken können gelegentlich im Hochgebirge im Bereich steiler Bergspitzen oder langgezogener Bergrücken, wie z.B. dem Matterhorn in den Schweizer Alpen oder dem Zugspitzgrat in den Bayrischen Alpen beobachtet werden. Der Begriff bezeichnet eine Banner- oder Fahnen-ähnliche Wolkenstruktur, welche an der windabgewandten Seite des Berges befestigt zu sein scheint, während die windzugewandte Seite vollkommen wolkenfrei ist. Bannerwolken fanden bislang, trotz ihres relativ häufigen Auftretens in der wissenschaftlichen Literatur kaum Beachtung. Entsprechend wenig ist über ihren Entstehungsmechanismus und insbesondere die relative Bedeutung dynamischer gegenüber thermodynamischer Prozesse bekannt. In der wissenschaftlichen Literatur wurden bislang 3 unterschiedliche Mechanismen postuliert, um die Entstehung von Bannerwolken zu erklären. Demnach entstehen Bannerwolken durch (a) den Bernoulli-Effekt, insbesondere durch die lokale adiabatische Kühlung hervorgerufen durch eine Druckabnahme entlang quasi-horizontal verlaufender, auf der windzugewandten Seite startender Trajektorien, (b) durch isobare Mischung bodennaher kälterer Luft mit wärmerer Luft aus höheren Schichten, oder (c) durch erzwungene Hebung im aufsteigenden Ast eines Leerotors. Ziel dieser Arbeit ist es, ein besseres physikalisches Verständnis für das Phänomen der Bannerwolke zu entwickeln. Das Hauptaugenmerk liegt auf dem dominierenden Entstehungsmechanismus, der relativen Bedeutung dynamischer und thermodynamischer Prozesse, sowie der Frage nach geeigneten meteorologischen Bedingungen. Zu diesem Zweck wurde ein neues Grobstruktursimulations (LES)-Modell entwickelt, welches geeignet ist turbulente, feuchte Strömungen in komplexem Terrain zu untersuchen. Das Modell baut auf einem bereits existierenden mesoskaligen (RANS) Modell auf. Im Rahmen dieser Arbeit wurde das neue Modell ausführlich gegen numerische Referenzlösungen und Windkanal-Daten verglichen. Die wesentlichen Ergebnisse werden diskutiert, um die Anwendbarkeit des Modells auf die vorliegende wissenschaftliche Fragestellung zu überprüfen und zu verdeutlichen. Die Strömung über eine idealisierte pyramidenförmige Bergspitze wurde für Froude-Zahlen Fr >> 1 sowohl auf Labor- als auch atmosphärischer Skala mit und ohne Berücksichtigung der Feuchtephysik untersucht. Die Simulationen zeigen, dass Bannerwolken ein primär dynamisches Phänomen darstellen. Sie entstehen im Lee steiler Bergspitzen durch dynamisch erzwungene Hebung. Die Simulationen bestätigen somit die Leerotor-Theorie. Aufgrund des stark asymmetrischen, Hindernis-induzierten Strömungsfeldes können Bannerwolken sogar im Falle horizontal homogener Anfangsbedingungen hinsichtlich Feuchte und Temperatur entstehen. Dies führte zu der neuen Erkenntnis, dass zusätzliche leeseitige Feuchtequellen, unterschiedliche Luftmassen in Luv und Lee, oder Strahlungseffekte keine notwendige Voraussetzung für die Entstehung einer Bannerwolke darstellen. Die Wahrscheinlichkeit der Bannerwolkenbildung steigt mit zunehmender Höhe und Steilheit des pyramidenförmigen Hindernisses und ist in erster Näherung unabhängig von dessen Orientierung zur Anströmung. Simulationen mit und ohne Berücksichtigung der Feuchtephysik machen deutlich, dass thermodynamische Prozesse (insbes. die Umsetzung latenter Wärme) für die Dynamik prototypischer (nicht-konvektiver) Bannerwolken zweitrangig ist. Die Verstärkung des aufsteigenden Astes im Lee und die resultierende Wolkenbildung, hervorgerufen durch die Freisetzung latenter Wärme, sind nahezu vernachlässigbar. Die Feuchtephysik induziert jedoch eine Dipol-ähnliche Struktur im Vertikalprofil der Brunt-Väisälä Frequenz, was zu einem moderaten Anstieg der leeseitigen Turbulenz führt. Es wird gezeigt, dass Gebirgswellen kein entscheidendes Ingredienz darstellen, um die Dynamik von Bannerwolken zu verstehen. Durch eine Verstärkung der Absinkbewegung im Lee, haben Gebirgswellen lediglich die Tendenz die horizontale Ausdehnung von Bannerwolken zu reduzieren. Bezüglich geeigneter meteorologischer Bedingungen zeigen die Simulationen, dass unter horizontal homogenen Anfangsbedingungen die äquivalentpotentielle Temperatur in der Anströmung mit der Höhe abnehmen muss. Es werden 3 notwendige und hinreichende Kriterien, basierend auf dynamischen und thermodynamischen Variablen vorgestellt, welche einen weiteren Einblick in geeignete meteorologische Bedingungen geben.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die zwischen allen Objekten vorhandenen Wechselwirkungen können repulsiver und attraktiver Natur sein. Bei den attraktiven Kräften kommt der Bestimmung von Dispersionskräften eine besondere Bedeutung zu, da sie in allen kolloidalen Systemen vorhanden sind und entscheidenden Einfluss auf die Eigenschaften und Prozesse dieser Systeme nehmen. Eine der Möglichkeiten, Theorie und Experiment zu verbinden, ist die Beschreibung der London-Van der Waals-Wechselwirkung durch die Hamaker-Konstante, welche durch Berechnungen der Wechselwirkungsenergie zwischen Objekten erhalten werden kann. Für die Beschreibung von Oberflächenphänomenen wie Adhäsion, die in Termen der totalen potentiellen Energie zwischen Partikeln und Substrat beschrieben werden, benötigt man exakt bestimmte Hamaker-Konstanten. In der vorliegenden Arbeit wurde die asymmetrische Fluss Feld-Fluss Fraktionierung in Kombination mit einem auf dem Newton-Algorithmus basierenden Iterationsverfahren zur Bestimmung der effektiven Hamaker-Konstanten verschiedener Nanopartikeln sowie Polystyrollatex-Partikel in Toluol bzw. Wasser verwendet. Der Einfluss verschiedener Systemparameter und Partikeleigenschaften wurde im Rahmen der klassischen DLVO-Theorie untersucht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis can be divided in four parts and summarized as follows:(i) The investigation and development of a continuous flow synthesis procedure affording end-functional polymers by anionic polymerization and subsequent termination in one reaction step and on a multigram scale was carried out. Furthermore, the implementation of not only a single hydroxyl but multiple orthogonal functionalities at the chain terminus was achieved by utilizing individually designed, functional epoxide-based end-capping reagents.(ii) In an additional step, the respective polymers were used as macroinitiators to prepare in-chain functionalized block copolymers and star polymers bearing intriguing novel structural and material properties. Thus, the second part of this thesis presents the utilization of end-functional polymers as precursors for the synthesis of amphiphilic complex and in some cases unprecedented macromolecular architectures, such as miktoarm star polymers based on poly(vinyl pyridine), poly(vinyl ferrocene) and PEO.(iii) Based on these structures, the third part of this thesis represents a detailed investigation of the preparation of stimuli-responsive ultrathin polymer films, using amphiphilic junction point-reactive block copolymers. The single functionality at the block interface can be employed as anchor group for the covalent attachment on surfaces. Furthermore, the change of surface properties was studied by applying different external stimuli.(iv) An additional topic related to the oxyanionic polymerizations carried out in the context of this thesis was the investigation of viscoelastic properties of different hyperbranched polyethers, inspired by the recent and intense research activities in the field of biomedical applications of multi-functional hyperbranched materials.