5 resultados para disulfide bond

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vibrio cholerae Cytolysin (VCC) gehört zur Gruppe der Exotoxine und bildet auf Membranen heptamere transmembrane Poren. VCC wird als protoxin mit einem Molekulargewicht von 79 kDa sezerniert und benötigt die proteolytische Spaltung der N-terminalen Pro-Region um Poren in der Membran zu bilden. Diese Spaltung erfolgt sowohl in Lösung, als auch nach der Bindung an Membranen, aber nur aktiviertes VCC oligomererisiert in eine lytische Pore. Die Kristallstruktur von VCC zeigt, dass das Monomer vier verschiedenen strukturellen Domänen enthält; die cytolytische Domäne, mit der Pre-Stem-Sequenz, der Pro-Region und den beiden C-terminalen Domänen β-Trefoil und β-Prism. Die porenbildende β-Barrel wird aus je einer Pre-Stem Domäne jedes der einzelnen sieben Untereinheiten gebildet. Da sich die porenbildende Region im Monomer zwischen den Domänen β-Prism und β-Trefoil befindet, sind konformationelle Änderungen des Toxins notwendig, um die Insertion dieser Region in die Membran zu ermöglichen. In dieser Arbeit wurde unter anderem der Mechanismus der Porenbildung durch die Konstruktion von Disulfid-Derivaten untersucht. Die Bildung von Disulfidbrücken wurde verwendet, um die porenbildende Region entweder mit der β-Trefoil oder β-Prism Domäne zu verknüpfen. Unter nicht-reduzierenden Bedingungen bindet das Toxin an Membranen und oligomerisiert zu SDS-labilen Oligomeren. Nach der Reduktion der künstlichen Disulfidbrücke erlangen die gebildeten Oligomere SDS-Stabilität und permeabilisieren die Membran. Durch die Zugabe steigender Konzentrationen des VCC-Derivats zu aktivem Toxin, wird die SDS-Stabilität der gebildeten Oligomere stark reduziert. Die Insertion des aktiven Toxins in die Membran wird allerdings nicht verhindert und daher Poren mit reduziertem funktionellen Durchmesser gebildet. Diese Ergebnisse verdeutlichen, dass die Bildung einer Prä-Pore vor der Insertion des Toxins in die Membran erfolgt und zeigt zum ersten Mal ein solches Zwischenstadium für ein β-porenbildendes Toxin, das von Gram-negativen Organismen produziert wird. Diese Ergebnisse deuten auf einen archetypischen Mechanismus der Porenbildung hin. Zusätzlich wurde die Funktion der beiden C-terminalen Domänen untersucht, und daher verschiedene Deletions- und Substitutionsmutanten konstruiert. Die β-Trefoil Domäne ist nicht essentiell für die Bindung des Toxins an Membranen, ist aber für die korrekte Faltung des Toxins notwendig. Die C-terminale β-Prism Domäne vermittelt die Bindung des Toxins an Membranen über Zuckerrezeptoren.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein, which resembles a cell surface receptor, comprising a large ectodomain, a single spanning transmembrane part and a short C-terminal, cytoplasmic domain. It belongs to a conserved gene family, with over 17 members, including also the two mammalian APP homologues proteins APLP1 and APLP2 („amyloid precursor like proteins“). APP is encoded by 19 exons, of which exons 7, 8, and 15 can be alternatively spliced to produce three major protein isoforms APP770, APP751 and APP695, reflecting the number of amino acids. The neuronal APP695 is the only isoform that lacks a Kunitz Protease Inhibitor (KPI) domain in its extracellular portion whereas the two larger, peripheral APP isoforms, contain the 57-amino-acid KPI insert. rnRecently, research effort has suggested that APP metabolism and function is thought to be influenced by homodimerization and that the oligomerization state of APP could also play a role in the pathology of Alzheimer's disease (AD), by regulating its processing and amyloid beta production. Several independent studies have shown that APP can form homodimers within the cell, driven by motifs present in the extracellular domain, as well as in the juxtamembrane (JM) and transmembrane (TM) regions of the molecule, whereby the exact molecular mechanism and the origin of dimer formation remains elusive. Therefore, we focused in our study on the actual subcellular origin of APP homodimerization within the cell, an underlying mechanism, and a possible impact on dimerization properties of its homologue APLP1. Furthermore, we analyzed homodimerization of various APP isoforms, in particular APP695, APP751 and APP770, which differ in the presence of a Kunitz-type protease inhibitor domain (KPI) in the extracellular region. In order to assess the cellular origin of dimerization under different cellular conditions, we established a mammalian cell culture model-system in CHO-K1 (chinese hamster ovary) cells, stably overexpressing human APP, harboring dilysine based organelle sorting motifs at the very C-terminus [KKAA-Endoplasmic Reticulum (ER); KKFF-Golgi]. In this study we show that APP exists as disulfide-bound, SDS-stable dimers, when it was retained in the ER, unlike when it progressed further to the cis-Golgi, due to the KKFF ER exit determinant. These stable APP complexes were isolated from cells, and analyzed by SDS–polyacrylamide gel electrophoresis under non-reducing conditions, whereas strong denaturing and reducing conditions completely converted those dimers to monomers. Our findings suggested that APP homodimer formation starts early in the secretory pathway and that the unique oxidizing environment of the ER likely promotes intermolecular disulfide bond formation between APP molecules. We particularly visualized APP dimerization employing a variety of biochemical experiments and investigated the origin of its generation by using a Bimolecular Fluorescence Complementation (BiFC) approach with split GFP-APP chimeras. Moreover, using N-terminal deletion constructs, we demonstrate that intermolecular disulfide linkage between cysteine residues, exclusively located in the extracellular E1 domain, represents another mechanism of how an APP sub-fraction can dimerize within the cell. Additionally, mutational studies revealed that cysteines at positions 98 and 105, embedded in the conserved loop region within the E1 domain, are critical for interchain disulfide bond formation. Using a pharmacological treatment approach, we show that once generated in the oxidative environment of the ER, APP dimers remain stably associated during transport, reaching the plasma membrane. In addition, we demonstrate that APP isoforms, encompassing the KPI domain, exhibit a strongly reduced ability to form cis-directed dimers in the ER, whereas trans-directed cell aggregation of Drosophila Schneider (S2)-cells was isoform independent, mediating cell-cell contacts. Thus, suggesting that steric properties of KPI-APP might be the cause for weaker cis-interaction in the ER, compared to APP695. Finally, we provide evidence that APP/APLP1 heterointeractions are likewise initiated in the ER, suggesting a similar mechanism for heterodimerization. Therefore, dynamic alterations of APP between monomeric, homodimeric, and possibly heterodimeric status could at least partially explain some of the variety in the physiological functions of APP.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die hochspezifische Funktionalisierung von Proteinen und Peptiden kann durch milde reduktive Spaltung der lösungsmittelzugänglichen Disulfidbrücken und anschließende Rückverbrückung durch den Einbau sogenannter Linkermoleküle über einen konsekutiven Eliminierungs-Additionsprozess verwirklicht werden. Die Erweiterung des Linkerportfolios stellte in erster Instanz die Entwicklung von verschieden funktionalisierten Systemen dar, welche als hochflexible Kernbausteine für den Aufbau komplexer Architekturen dienten. Das Verständnis für die Reaktivität und Reversibilität der Thioladdition an die Mono-und Bissulfone in Abhängigkeit des Substituenten in p-Position konnte durch Variation von Parametern wie Lösungsmittel oder pH-Wert für intelligentes Produktdesign genutzt werden. Heterokonjugate zweier Biomoleküle mit ungepaartem Cystein wurden durch die Kombination von Maleinimid- und Bissulfonchemie innerhalb eines Linkermoleküls realisiert. Polymer-Peptid-Konjugate wurden einerseits über die grafting to Methode durch Modifizierung von Somatostatin mit PEGbissulfonen und anderseits durch grafting from unter Verwendung eines zuvor synthetisierten ATRP-Makroinitiators dargestellt. Multivalente Konjugate konnten durch die Synthese von hochsymmetrischen Tetra- sowie Hexasulfonen und anschließende Umsetzung mit Somatostatin erhalten werden. Die Polyinterkalatorpolymere, die durch lebende radikalische Polymerisation eines Bissulfidmonomers generiert wurden, wurden mit Glutathion umgesetzt. Durch die Interkalation von p-Ethinyl sowie p-Iodmonosulfon in die Disulfidbrücke von Somatostatin konnte erfolgreich gezeigt werden, dass die Rückverbrückung unter Rezyklisierung gelang. Die biologische Integrität wurde durch die Modifikation nicht beeinträchtigt und die erfolgreiche Aufnahme wurde nur bei den rezeptorpositiven Zellen (CAPAN-2) beobachtet. Das artifizielle Iodderivat im Vergleich zum nativen Somatostatin ein erhöhtes Potential zur Apoptoseinduktion. Die Somatostatinderivate präsentierten sich somit als attraktive potentielle Therapeutika.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der Dissertation konnte gezeigt werden, dass von einem pp65(495-503)-spezifischen Doppelketten-TZR (2-Plasmide-retrovirales Vektorsystem) ein Potential der Fremdinteraktion mit spezifitätsfremden humanen gp100(280-288)- und AML(14-22)- sowie murinen MDM2(81-88)- und p53(264-272)-Tumorantigen-spezifischen TZRa und -b Ketten besteht. Folglich zeichneten sich essentielle Optimierungsverfahren ab. Für die Generierung von bi-spezifischen T-Zellenrnwurden zwei Strategien etabliert. Das erste Verfahren hatte zur Voraussetzung, dass der Donor und Rezipient einen HCMV-seropositiven Status aufweisen würden. Es ließen sich pp65(495-503)-spezifische T-Zellen aus HCMV-seropositiven Blutproben expandieren, die eine effiziente pp65(495-503)-Spezifität charakterisierte. In der zweiten Strategie wurde die Situation behandelt, dass der Donor HCMV-seronegativ und der Rezipient HCMV-seropositiv wären.rnHierbei wurde das Verfahren der simultanen Kotransfektion mit einem pp65(495-503)- und p53(264-272)-spezifischen TZR etabliert. Bei der Verwendung beider Strategien konnten effizient p53(264-272)-Tumorantigen und pp65(495-503)-bi-spezifische T-Zellen generiert werden.rnHinzukommend konnte der Einfluss einer möglichen Kompetition um CD3 undrnFehlinteraktion mit den endogenen TZRa und -b Ketten dargelegt werden. Des Weiteren erfolgten Interaktionsanalysen mit einem p53(264-272)-Tumorantigen-spezifischen Einzelketten-TZR. Die Analysen erfolgten sowohl unter nicht-kompetitiven Bedingungen in der humanen Jurkat-76 Zelllinie, welche den genomischen Verlust von endogenen TZRa und -b Ketten kennzeichnete, als auch unter kompetitiven Bedingungen in den humanen T-Zellen, die endogene TZRa und -b Ketten besitzen. In dem 2-Plasmide-retroviralen Vektorsystem konnte gezeigt werden, dass unter nicht-kompetitiven Bedingungen der p53(264-272)- Tumorantigen-spezifische Einzelketten-TZR in erhöhtem Maße mit der murinen MDM2(81-88)-sowie homologen p53(264-272)- als auch mit den humanen TZRa Ketten der Spezifitäten AML(14-22), gp100(280-288) und pp65(495-503) (Vb3-Analyse) interagieren konnte. Interessanterweise zeigte sich im 1-Plasmid-retroviralen Vektorsystem ein geringeres Interaktionsverhalten mit murinen und vor allem humanen TZRa Ketten. Das Interaktionspotential schien TZR Subfamilien-abhängig zu sein. Essentiell war es, dass der p53(264-272)-Tumorantigenspezifische Einzelketten-TZR eines 1-Plasmid-retroviralen Vektorsystems, trotz minimaler Beeinflussungen, stets an der Zelloberfläche exprimiert werden konnte und sich kein vollständiger Verlust der p53(264-272)-Spezifität verzeichnen ließ. Aufgrund der Verdrängung der Va-Domäne des p53(264-272)-Tumorantigen-spezifischen Einzelketten-TZR durch eine Volllängen-TZRa-Kette, erfolgte die Optimierung der Va/Vb-Interaktion des Einzelketten-TZR (1-Plasmid-retrovirales Vektorsystem). Es konnte ein neuartiger p53(264-272)-Tumorantigenspezifischer Einzelketten-TZR mit einer zusätzlichen künstlichen Disulfidbrücke zwischen Va(Q51C) und dem C-terminalen Ende des SL7-Linkers (G16C) generiert werden. Dieser Einzelketten-TZR zeigte im Vergleich zum Ausgangskonstrukt eine stärkere Va/Vb-Bindung, ausgelesen an einer effizienten Reduktion der residuellen Kettenfehlinteraktion, sowie eine effiziente TZR-Expression und Funktionalität, als auch eine vergleichbare TZR-MHC:Peptid-Affinität. Zusammenfassend konnten pp65(465-503)- und p53(264-272)-Tumorantigen-bi-spezifische T-Zellen generiert werden, die eine effiziente duale Spezifität aufwiesen. Auch konnte detailliert das Interaktionsverhalten eines p53(264-272)-Tumorantigen-spezifischen Einzelketten-TZR mit spezifitätsfremden TZRa Ketten dargelegt sowie eine Optimierung eines p53(264-272)-Tumorantigen-spezifischen Einzelketten-TZR (1-Plasmid-retrovirales Vektorsystem) erzielt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Der Fokus dieser Arbeit lag in der Synthese von funktionellen HPMA-Copolymeren, sowohl für die Darstellung definierter Polymer-Antikörper Konjugate, als auch zum effizienten Transport von p-DNA in Polymer-DNA Komplexen (Polyplexe). Nach ausführlicher physikalischer und chemischer Charakterisierung wurden gezielt ihre Wechselwirkungen mit (Immun)-Zellen untersucht und so ihr Potential für die Verwendung in der Tumor-Immuntherapie aufgezeigt.rnFür das gezielte Ansprechen von bestimmten Immunzellen mit Schlüsselfunktionen besitzen monoklonale Antikörper ein großes Potential. Im Rahmen dieser Arbeit gelang die Darstellung definierter Polymer-Antikörper Konjugate über das gezielte Einführen von Thiol-Gruppen an Antikörper und die Synthese eng verteilter, Maleinimid funktionalisierter HPMA-Copolymere. Diese sehr gut definierten, funktionellen HPMA-Copolymere konnten über die Kombination der RAFT-Polymerisation und Reaktivester Polymeren gewonnen werden. Unterschiedliche Polymerstrukturen ermöglichten die Synthese verschiedener Arten von Polymer-Antikörper Konjugaten. Speziell die Untersuchung der verschiedenen Konjugate aus dem für dendritische Zellen spezifischen aDEC-205 Antikörper an Immunzellen aus dem Knochenmark von Mäusen lieferten wertvolle Erkenntnisse über Struktur-Wirkungsbeziehungen und zeigten die Möglichkeit der gezielten Adressierung von Immunzellen mit Schlüsselfunktionen bei der Aktivierung einer (Tumor)-Immunabwehr am Beispiel von dendritischen Zellen. Gleichzeitig erlaubt der Syntheseweg sowohl die gleichzeitige und kontrollierte Einführung auch komplexerer Stimuli am Polymerrückgrat als auch die Verwendung verschiedener Antikörper.rnÜber die Kombination der RAFT-Polymerisation und polymeren Reaktivestern wurde ebenso die Synthese von neuartigen kationisch-hydrophilen Polylysin-b-poly(HPMA) Blockcopolymeren als effiziente Transporter für den komplexen aber wirkungsvollen Wirkstoff p-DNA in Form von Polymer-DNA Komplexen (Polyplexe) realisiert. Da diese Polyplexe gleichzeitig eine Abschirmung der sensitiven p-DNA über eine poly(HPMA)-Korona vermitteln, stellen sie allgemein ein geeignetes Transportmittel für einen therapeutischen Transport von p-DNA dar. Diese Polyplexe sind in der Lage, humane Nierenkarzinomzellen (HEK-293T Zelllinie) zu transfizieren ohne signifikante Zytotoxizität zu zeigen. Darüber hinaus gelang eine große Steigerung der Transfektionseffizienz, ohne eine gleichzeitige Erhöhung der Zytotoxizität, durch die gezielte Einführung von Redox-stimuliresponsiven Disulfid-Gruppen zwischen den einzelnen Blöcken. Diese Polyplexe stellen einen polymeren Vektor zur transkriptionellen Regulierung von Zellen dar, zum Beispiel für die transkriptionelle Aktivierung von dendritischen Zellen, durch die Verwendung speziell dafür modifizierter p-DNA-Konstrukte. rnDurch die Verknüpfung einer ortsspezifischen enzymatischen Kopplung und kupferfreien Cyclooctin-Azid Kupplung gelang die kontrollierte und kovalente Modifizierung von polymeren Mizellen mit aDEC-205 Antikörpern an der hydrophilen poly(HPMA)-Korona. Diese Methode bietet die Möglichkeit der Anbindung der effektiven aber anspruchsvollen Erkennungsstruktur Antikörper an komplexere Polymerstrukturen und andere nano-partikulären Systeme, zum Beispiel an die zuvor genannten Polyplexe, um eine zellspezifische und verbesserte Aufnahme und Prozessierung zu erreichen.rnDiese Studien zeigen somit, sowohl die Möglichkeit der selektiven Addressierung von Immunzellen mit Schlüsselfunktionen wie dendritischer Zellen, als auch die Möglichkeit der transkriptionellen Regulation von Zellen durch Polyplexe. Sie stellen somit einen ersten Schritt zur Herstellung funktioneller, nanopartikulärer Systeme zur Verwendung in der Tumor-Immuntherapie dar. rn