6 resultados para discrete tomography

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die wichtigste Klasse zeotyper Verbindungen sind die Thio- und Selenophosphate der Übergangsmetalle. Ziel dieser Dissertation war die Darstellung und Charakterisierung neuer Uranthiophosphate. Die dargestellten Verbindungen enthalten vierwertige Urankationen, die von acht Schwefelatomen koordiniert sind. Da die enthaltenen Thiophosphatanionen in den meisten Fällen als zweizähnige Liganden fungieren, entstehen dreidimensionale Netzwerke mit pseudotetraedrisch koordinierten Metallzentren. In der Verbindung U(P2S6)2 durchdringen sich drei identische diamantartige Netzwerke, wodurch optimale Raumerfüllung erreicht wird. Die Einführung von Alkalimetallkationen in das System führt zu einer Vielzahl neuer Verbindungen, deren Eigenschaften durch die Stöchiometrie der Edukte und durch die Kationenradien bestimmt werden. Beispielsweise enthält die Kristallstruktur von Na2U(PS4)2 zweidimensionale anionische [U(PS4)2]n-Schichten, während die analoge Verbindung CsLiU(PS4)2 eine poröse dreidimensionale Netzwerkstruktur besitzt. Der Vergleich der untersuchten quaternären und quinären Verbindungen zeigt, dass eine Korrelation zwischen dem Kationenradius und dem Durchmesser der Poren besteht. Dies lässt auf eine Templatfunktion der Alkalimetallkationen beim Aufbau der anionischen Teilstruktur schließen. Die neuen Verbindungen wurden aus reaktiven Polysulfidschmelzflüssen oder durch Auflösen amorpher Vorläufer in Alkalimetallchloridschmelzen synthetisiert. Die Kristallstrukturen wurden durch Einkristall-Röntgenmethoden bestimmt. Ein Vergleich der magnetischen Eigenschaften der Verbindungen beweist, dass in allen untersuchten Fällen U(IV) vorliegt. Die Substanzen zeigen paramagnetisches Verhalten, in UP2S7 und CsLiU(PS4)2 sind außerdem antiferromagnetische Wechselwirkungen zwischen benachbarten Uranatomen nachweisbar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die zuverlässige Berechnung von quantitativen Parametern der Lungenventilation ist für ein Verständnis des Verhaltens der Lunge und insbesondere für die Diagnostik von Lungenerkrankungen von großer Bedeutung. Nur durch quantitative Parameter sind verlässliche und reproduzierbare diagnostische Aussagen über den Gesundheitszustand der Lunge möglich. Im Rahmen dieser Arbeit wurden neue quantitative Verfahren zur Erfassung der Lungenventilation basierend auf der dynamischen Computer- (CT) und Magnetresonanztomographie (MRT) entwickelt. Im ersten Teil dieser Arbeit wurde die Frage untersucht, ob das Aufblähen der Lunge in gesunden Schweinelungen und Lungen mit Akutem Lungenversagen (ARDS) durch einzelne, diskrete Zeitkonstanten beschrieben werden kann, oder ob kontinuierliche Verteilungen von Zeitkonstanten die Realität besser beschreiben. Hierzu wurden Serien dynamischer CT-Aufnahmen während definierter Beatmungsmanöver (Drucksprünge) aufgenommen und anschließend aus den Messdaten mittels inverser Laplace-Transformation die zugehörigen Verteilungen der Zeitkonstanten berechnet. Um die Qualität der Ergebnisse zu analysieren, wurde der Algorithmus im Rahmen von Simulationsrechnungen systematisch untersucht und anschließend in-vivo an gesunden und ARDS-Schweinelungen eingesetzt. Während in den gesunden Lungen mono- und biexponentielle Verteilungen bestimmt wurden, waren in den ARDS-Lungen Verteilungen um zwei dominante Zeitkonstanten notwendig, um die gemessenen Daten auf der Basis des verwendeten Modells verlässlich zu beschreiben. Es wurden sowohl diskrete als auch kontinuierliche Verteilungen gefunden. Die CT liefert Informationen über das solide Lungengewebe, während die MRT von hyperpolarisiertem 3He in der Lage ist, direkt das eingeatmete Gas abzubilden. Im zweiten Teil der Arbeit wurde zeitlich hochaufgelöst das Einströmen eines 3He-Bolus in die Lunge erfasst. Über eine Entfaltungsanalyse wurde anschließend das Einströmverhalten unter Idealbedingungen (unendlich kurzer 3He-Bolus), also die Gewebeantwortfunktion, berechnet und so eine Messtechnik-unabhängige Erfassung des Einströmens von 3He in die Lunge ermöglicht. Zentrale Fragestellung war hier, wie schnell das Gas in die Lunge einströmt. Im Rahmen von Simulationsrechnungen wurde das Verhalten eines Entfaltungsalgorithmus (basierend auf B-Spline Repräsentationen) systematisch analysiert. Zusätzlich wurde ein iteratives Entfaltungsverfahren eingesetzt. Aus zeitlich hochaufgelösten Messungen (7ms) an einer gesunden und einer ARDS-Schweinelunge konnte erstmals nachgewiesen werden, dass das Einströmen in-vivo in weniger als 0,1s geschieht. Die Ergebnisse zeigen Zeitkonstanten im Bereich von 4ms–50ms, wobei zwischen der gesunden Lungen und der ARDS-Lunge deutliche Unterschiede beobachtet wurden. Zusammenfassend ermöglichen daher die in dieser Arbeit vorgestellten Algorithmen eine objektivere Bestimmung quantitativer Parameter der Lungenventilation. Dies ist für die eindeutige Beschreibung ventilatorischer Vorgänge in der Lunge und somit für die Lungendiagnostik unerlässlich. Damit stehen quantitative Methoden für die Lungenfunktionsdiagnostik zur Verfügung, deren diagnostische Relevanz im Rahmen wissenschaftlicher und klinischer Studien untersucht werden kann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zur geometrischen Vermessung und Beschreibung von Einschlüssen in natürlichen sowie im Labor geschaffenen Eispartikeln wurde ein neuartiger Versuchaufbau an der Tomographie-Endstation der Material Science Beam Line an der Swiss Light Source (SLS, Paul Scherrer Institut, Villigen, Schweiz) entwickelt. Dieser besteht aus einer Plexiglas-Tasse und einem doppelwandigen Kaptonfolien-Käfig, der wiederum auf die Düse eines CryojetXL (Oxford Instruments) montiert wurde. Abgesehen von dem hohen Maß an Flexibilit¨at bez¨uglich der Installation erlaubt es dieser Aufbau, die Temperatur des Experiments mit einer Genauigkeit von ± 1 K über einen Bereich von 271 K bis 220 K zu regeln. In den hier beschriebenen Experimenten wurde eine räumliche Auflösung von 1.4 µm erzielt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L-infinity-conductivities (with positive infima) in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In electrical impedance tomography, one tries to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many practically important situations, the investigated object has known background conductivity but it is contaminated by inhomogeneities. The factorization method of Andreas Kirsch provides a tool for locating such inclusions. Earlier, it has been shown that under suitable regularity conditions positive (or negative) inhomogeneities can be characterized by the factorization technique if the conductivity or one of its higher normal derivatives jumps on the boundaries of the inclusions. In this work, we use a monotonicity argument to generalize these results: We show that the factorization method provides a characterization of an open inclusion (modulo its boundary) if each point inside the inhomogeneity has an open neighbourhood where the perturbation of the conductivity is strictly positive (or negative) definite. In particular, we do not assume any regularity of the inclusion boundary or set any conditions on the behaviour of the perturbed conductivity at the inclusion boundary. Our theoretical findings are verified by two-dimensional numerical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.