4 resultados para correlated times
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung des 570 Ma alten, neoproterozoischen Agardagh - Tes-Chem Ophioliths (ATCO) in Zentralasien. Dieser Ophiolith liegt südwestlich des Baikalsees (50.5° N, 95° E) und wurde im frühen Stadium der Akkretion des Zentralasiatischen Mobilgürtels auf den nordwestlichen Rand des Tuvinisch-Mongolischen Mikrokontinentes aufgeschoben. Bei dem Zentralasiatische Mobilgürtel handelt es sich um einen riesigen Akkretions-Subduktionskomplex, der heute das größte zusammenhängende Orogen der Erde darstellt. Im Rahmen dieser Arbeit wurden eine Reihe plutonischer und vulkanischer Gesteine, sowie verschiedene Mantelgesteine des ATCO mittels mikroanalytischer und geochemischer Verfahren untersucht (Elektronenstrahlmikrosonde, Ionenstrahlmikrosonde, Spurenelement- und Isotopengeochemie). Die Auswertung dieser Daten ermöglichte die Entwicklung eines geodynamisch-petrologischen Modells zur Entstehung des ATCO. Die vulkanischen Gesteine lassen sich aufgrund ihrer Spurenelement- und Isotopenzusammensetzung in inselbogenbezogene und back-arc Becken bezogene Gesteine (IA-Gesteine und BAB-Gesteine) unterscheiden. Darüber hinaus gibt es eine weitere, nicht eindeutig zuzuordnende Gruppe, die hauptsächlich mafische Gänge umfasst. Der grösste Teil der untersuchen Vulkanite gehört zur Gruppe der IA-Gesteine. Es handelt sich um Al-reiche Basalte und basaltische Andesite, welche aus einem evolvierten Stammmagma mit Mg# 0.60, Cr ~ 180 µg/g und Ni ~ 95 µg/g hauptsächlich durch Klinopyroxenfraktionierung entstanden sind. Das Stammmagma selbst entstand durch Fraktionierung von ca. 12 % Olivin und geringen Anteilen von Cr-Spinell aus einer primären, aus dem Mantel abgeleiteten Schmelze. Die IA-Gesteine haben hohe Konzentrationen an inkompatiblen Spurenelementen (leichte-(L)- Seltenerdelement-(SEE)-Konzentrationen etwa 100-fach chondritisch, chondrit-normierte (La/Yb)c von 14.6 - 5.1), negative Nb-Anomalien (Nb/La = 0.37 - 0.62) und niedrige Zr/Nb Verhältnisse (7 - 14) relativ zu den BAB-Gesteinen. Initiale eNd Werte liegen bei etwa +5.5, initiale Bleiisotopenverhältnisse sind: 206Pb/204Pb = 17.39 - 18.45, 207Pb/204Pb = 15.49 - 15.61, 208Pb/204Pb = 37.06 - 38.05. Die Anreicherung lithophiler inkompatibler Spurenelemente (LILE) in dieser Gruppe ist signifikant (Ba/La = 11 - 130) und zeigt den Einfluss subduzierter Komponenten an. Die BAB-Gesteine repräsentieren Schmelzen, die sehr wahrscheinlich aus der gleichen Mantelquelle wie die IA-Gesteine stammen, aber durch höhere Aufschmelzgrade (8 - 15 %) und ohne den Einfluss subduzierter Komponenten entstanden sind. Sie haben niedrigere Konzentrationen an inkompatiblen Spurenelementen, flache SEE-Muster ((La/Yb)c = 0.6 - 2.4) und höhere initiale eNd Werte zwischen +7.8 und +8.5. Nb Anomalien existieren nicht und Zr/Nb Verhältnisse sind hoch (21 - 48). Um die geochemische Entwicklung der vulkanischen Gesteine des ATCO zu erklären, sind mindestens drei Komponenten erforderlich: (1) eine angereicherte, ozeaninselbasalt-ähnliche Komponente mit hoher Nb Konzentration über ~ 30 µg/g, einem niedrigen Zr/Nb Verhältnis (ca. 6.5), einem niedrigen initialen eNd Wert (um 0), aber mit radiogenen 206Pb/204Pb-, 207Pb/204Pb- und 208Pb/204Pb-Verhältnissen; (2) eine N-MORB ähnliche back-arc Becken Komponente mit flachem SEE-Muster und einem hohen initialen eNd Wert von mindestens +8.5, und (3) eine Inselbogen-Komponente aus einer verarmten Mantelquelle, welche durch die abtauchende Platte geochemisch modifiziert wurde. Die geochemische Entstehung der ATCO Vulkanite lässt sich dann am besten durch eine Kombination aus Quellenkontamination, fraktionierte Kristallisation und Magmenmischung erklären. Geodynamisch gesehen entstand der ATCO sehr wahrscheinlich in einem intraozeanischen Inselbogen - back-arc System. Bei den untersuchten Plutoniten handelt es sich um ultramafische Kumulate (Wehrlite und Pyroxenite) sowie um gabbroische Plutonite (Olivin-Gabbros bis Diorite). Die geochemischen Charakteristika der mafischen Plutonite sind deutlich unterschiedlich zu denen der vulkanischen Gesteine, weshalb sie sehr wahrscheinlich ein späteres Entwicklungsstadium des ATCO repräsentieren. Die Spurenelement-Konzentrationen in den Klinopyroxenen der ultramafischen Kumulate sind extrem niedrig, mit etwa 0.1- bis 1-fach chondritischen SEE-Konzentrationen und mit deutlich LSEE-verarmten Mustern ((La/Yb)c = 0.27 - 0.52). Berechnete Gleichgewichtsschmelzen der ultramafischen Kumulate zeigen grosse Ähnlichkeit zu primären boninitischen Schmelzen. Die primären Magmen waren daher boninitischer Zusammensetzung und entstanden in dem durch vorausgegangene Schmelzprozesse stark verarmten Mantelkeil über einer Subduktionszone. Niedrige Spurenelement-Konzentrationen zeigen einen geringen Einfluss der abtauchenden Platte an. Die Spurenelement-Konzentrationen der Gabbros sind ebenfalls niedrig, mit etwa 0.5 - 10-fach chondritischen SEE-Konzentrationen und mit variablen SEE-Mustern ((La/Yb)c = 0.25 - 2.6). Analog zu den Vulkaniten der IA-Gruppe haben alle Gabbros eine negative Nb-Anomalie mit Nb/La = 0.01 - 0.31. Die initialen eNd Werte der Gabbros variieren zwischen +4.8 und +7.1, mit einem Mittelwert von +5.9, und sind damit identisch mit denen der IA-Vulkanite. Bei den untersuchten Mantelgesteinen handelt es sich um teilweise serpentinisierte Dunite und Harzburgite, die alle durch hohe Mg/Si- und niedrige Al/Si-Verhältnisse gekennzeichnet sind. Dies zeigt einen refraktären Charakter an und steht in guter Übereinstimmung mit den hohen Cr-Zahlen (Cr#) der Spinelle (bis zu Cr# = 0.83), auf deren Basis der Aufschmelzgrad der residuellen Mantelgesteine berechnet wurde. Dieser beträgt etwa 25 %. Die geochemische Zusammensetzung und die petrologischen Daten der Ultramafite und Gabbros lassen sich am besten erklären, wenn man für die Entstehung dieser Gesteine einen zweistufigen Prozess annimmt. In einer ersten Stufe entstanden die ultramafischen Kumulate unter hohem Druck in einer Magmenkammer an der Krustenbasis, hauptsächlich durch Klinopyroxen-Fraktionierung. Bei dieser Magmenkammer handelte es sich um ein offenes System, dem von unten laufend neue Schmelze zugeführt wurde, und aus dem im oberen Bereich evolviertere Schmelzen geringerer Dichte entwichen. Diese evolvierten Schmelzen stiegen in flachere krustale Bereiche auf und bildeten dort meist isolierte Intrusionskörper. Diese Intrusionskörper erstarrten ohne Magmen-Nachschub, weshalb petrographisch sehr unterschiedliche Gesteine entstehen konnten. Eine geochemische Modifikation der abkühlenden Schmelzen erfolgte allerdings durch die Assimilation von Nebengestein. Da innerhalb der Gabbros keine signifikante Variation der initalen eNd Werte existiert, handelte es sich bei dem assimilierten Material hauptsächlich um vulkanische Gesteine des ATCO und nicht um ältere, möglicherweise kontinentale Kruste.
Resumo:
In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2.
In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy.
The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined
Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase.
In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory.
This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 0
Resumo:
This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.
Resumo:
Ziel der vorliegenden Dissertation war die Untersuchung der Liefergebiete und Ablagerungsräume sedimentärer Gesteine aus ausgewählten Gebieten der inneren Helleniden Griechenlands. Die untersuchten Sedimente Nordgriechenlands gehören zu den Pirgadikia und Vertiskos Einheiten des Serbo-Makedonische Massifs, zu den Examili, Melissochori und Prinochori Formationen der östlichen Vardar Zone und zur Makri Einheit und Melia Formation des östlichen Zirkum-Rhodope-Gürtels in Thrakien. In der östlichen Ägäis lag der Schwerpunkt bei den Sedimenten der Insel Chios. Der Metamorphosegrad der untersuchten Gesteine variiert von der untersten Grünschieferfazies bis hin zur Amphibolitfazies. Das stratigraphische Alter reicht vom Ordovizium bis zur Kreide. Zur Charakterisierung der Gesteine und ihrer Liefgebiete wurden Haupt- und Spurenelementgehalte der Gesamtgesteine bestimmt, mineralchemische Analysen durchgeführt und detritische Zirkone mit U–Pb datiert. An ausgewählten Proben wurden außerdem biostratigraphische Untersuchungen zur Bestimmung des Sedimentationsalters durchgeführt. Die Untersuchungsergebnisse dieser Arbeit sind von großer Bedeutung für paläogeographische Rekonstruktionen der Tethys. Die wichtigsten Ergebnisse lassen sich wie folgt zusammenfassen: Die ältesten Sedimente Nordgriechenlands gehören zur Pirgadikia Einheit des Serbo-Makedonischen Massifs. Es sind sehr reife, quarzreiche, siliziklastische Metasedimente, die auf Grund ihrer Maturität und ihrer detritischen Zirkone mit ordovizischen overlap-Sequenzen vom Nordrand Gondwanas korreliert werden können. Die Metasedimente der Vertiskos Einheit besitzen ein ähnliches stratigraphisches Alter, haben aber einen anderen Ablagerungsraum. Das Altersspektrum detritischer Zirkone lässt auf ein Liefergebiet im Raum NW Afrikas (Hun Superterrane) schließen. Die Gesteinsassoziation der Vertiskos Einheit wird als Teil einer aktiven Kontinentalrandabfolge gesehen. Die ältesten biostratigraphisch datierten Sedimente Griechenlands sind silurische bis karbonische Olistolithe aus einer spätpaläozoischen Turbidit-Olistostrom Einheit auf der Insel Chios. Die Alter detritischer Zirkone und die Liefergebietsanalyse der fossilführenden Olistolithe lassen den Schluss zu, dass die klastischen Sedimente von Chios Material vom Sakarya Mikrokontinent in der West-Türkei und faziellen Äquivalenten zu paläozoischen Gesteinen der Istanbul Zone in der Nord-Türkei und der Balkan Region erhalten haben. Während der Permotrias wurde die Examili Formation der östlichen Vardar Zone in einem intrakontinentalen, sedimentären Becken, nahe der Vertiskos Einheit abgelagert. Untergeordnet wurde auch karbonisches Grundgebirgsmaterial eingetragen. Im frühen bis mittleren Jura wurde die Melissochori Formation der östlichen Vardar Zone am Abhang eines karbonatführenden Kontinentalrandes abgelagert. Der Großteil des detritischen Materials kam von permokarbonischem Grundgebirge vulkanischen Ursprungs, vermutlich von der Pelagonischen Zone und/oder der unteren tektonischen Einheit des Rhodope Massifs. Die Makri Einheit in Thrakien besitzt vermutlich ein ähnliches Alter wie die Melissochori Formation. Beide sedimentären Abfolgen ähneln sich sehr. Der Großteil des detritischen Materials für die Makri Einheit kam vom Grundgebirge der Pelagonischen Zone oder äquivalenten Gesteinen. Während der frühen Kreide wurde die Prinochori Formation der östlichen Vardar Zone im Vorfeld eines heterogenen Deckenstapels abgelagert, der ophiolitisches Material sowie Grundgebirge ähnlich zu dem der Vertiskos Einheit enthielt. Ebenfalls während der Kreidezeit wurde in Thrakien, vermutlich im Vorfeld eines metamorphen Deckenstapels mit Affinitäten zum Grundgebirge der Rhodopen die Melia Formation abgelagert. Zusammenfassend kann festgehalten werden, dass die Subduktion eines Teiles der Paläotethys und die anschließende Akkretion vom Nordrand Gondwanas stammender Mikrokontinente (Terranes) nahe dem südlichen aktiven Kontinentalrand Eurasiens den geodynamischen Rahmen für die Schüttung des detritischen Materials der Sedimente der inneren Helleniden im späten Paläozoikum bildeten. Die darauf folgenden frühmesozoischen Riftprozesse leiteten die Bildung von Ozeanbecken der Neotethys ein. Intraozeanische Subduktion und die Obduzierung von Ophioliten prägten die Zeit des Jura. Die spätjurassische und frühkretazische tektonische Phase wurde durch die Ablagerung von mittelkretazischen Kalksteinen besiegelt. Die endgültige Schließung von Ozeanbecken der Neotethys im Bereich der inneren Helleniden erfolgte schließlich in der späten Kreide und im Tertiär.