3 resultados para collision detection
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In technical design processes in the automotive industry, digital prototypes rapidly gain importance, because they allow for a detection of design errors in early development stages. The technical design process includes the computation of swept volumes for maintainability analysis and clearance checks. The swept volume is very useful, for example, to identify problem areas where a safety distance might not be kept. With the explicit construction of the swept volume an engineer gets evidence on how the shape of components that come too close have to be modified.rnIn this thesis a concept for the approximation of the outer boundary of a swept volume is developed. For safety reasons, it is essential that the approximation is conservative, i.e., that the swept volume is completely enclosed by the approximation. On the other hand, one wishes to approximate the swept volume as precisely as possible. In this work, we will show, that the one-sided Hausdorff distance is the adequate measure for the error of the approximation, when the intended usage is clearance checks, continuous collision detection and maintainability analysis in CAD. We present two implementations that apply the concept and generate a manifold triangle mesh that approximates the outer boundary of a swept volume. Both algorithms are two-phased: a sweeping phase which generates a conservative voxelization of the swept volume, and the actual mesh generation which is based on restricted Delaunay refinement. This approach ensures a high precision of the approximation while respecting conservativeness.rnThe benchmarks for our test are amongst others real world scenarios that come from the automotive industry.rnFurther, we introduce a method to relate parts of an already computed swept volume boundary to those triangles of the generator, that come closest during the sweep. We use this to verify as well as to colorize meshes resulting from our implementations.
Resumo:
Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.
Resumo:
In vielen Bereichen der industriellen Fertigung, wie zum Beispiel in der Automobilindustrie, wer- den digitale Versuchsmodelle (sog. digital mock-ups) eingesetzt, um die Entwicklung komplexer Maschinen m ̈oglichst gut durch Computersysteme unterstu ̈tzen zu k ̈onnen. Hierbei spielen Be- wegungsplanungsalgorithmen eine wichtige Rolle, um zu gew ̈ahrleisten, dass diese digitalen Pro- totypen auch kollisionsfrei zusammengesetzt werden k ̈onnen. In den letzten Jahrzehnten haben sich hier sampling-basierte Verfahren besonders bew ̈ahrt. Diese erzeugen eine große Anzahl von zuf ̈alligen Lagen fu ̈r das ein-/auszubauende Objekt und verwenden einen Kollisionserken- nungsmechanismus, um die einzelnen Lagen auf Gu ̈ltigkeit zu u ̈berpru ̈fen. Daher spielt die Kollisionserkennung eine wesentliche Rolle beim Design effizienter Bewegungsplanungsalgorith- men. Eine Schwierigkeit fu ̈r diese Klasse von Planern stellen sogenannte “narrow passages” dar, schmale Passagen also, die immer dort auftreten, wo die Bewegungsfreiheit der zu planenden Objekte stark eingeschr ̈ankt ist. An solchen Stellen kann es schwierig sein, eine ausreichende Anzahl von kollisionsfreien Samples zu finden. Es ist dann m ̈oglicherweise n ̈otig, ausgeklu ̈geltere Techniken einzusetzen, um eine gute Performance der Algorithmen zu erreichen.rnDie vorliegende Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir parallele Kollisionserkennungsalgorithmen. Da wir auf eine Anwendung bei sampling-basierten Bewe- gungsplanern abzielen, w ̈ahlen wir hier eine Problemstellung, bei der wir stets die selben zwei Objekte, aber in einer großen Anzahl von unterschiedlichen Lagen auf Kollision testen. Wir im- plementieren und vergleichen verschiedene Verfahren, die auf Hu ̈llk ̈operhierarchien (BVHs) und hierarchische Grids als Beschleunigungsstrukturen zuru ̈ckgreifen. Alle beschriebenen Verfahren wurden auf mehreren CPU-Kernen parallelisiert. Daru ̈ber hinaus vergleichen wir verschiedene CUDA Kernels zur Durchfu ̈hrung BVH-basierter Kollisionstests auf der GPU. Neben einer un- terschiedlichen Verteilung der Arbeit auf die parallelen GPU Threads untersuchen wir hier die Auswirkung verschiedener Speicherzugriffsmuster auf die Performance der resultierenden Algo- rithmen. Weiter stellen wir eine Reihe von approximativen Kollisionstests vor, die auf den beschriebenen Verfahren basieren. Wenn eine geringere Genauigkeit der Tests tolerierbar ist, kann so eine weitere Verbesserung der Performance erzielt werden.rnIm zweiten Teil der Arbeit beschreiben wir einen von uns entworfenen parallelen, sampling- basierten Bewegungsplaner zur Behandlung hochkomplexer Probleme mit mehreren “narrow passages”. Das Verfahren arbeitet in zwei Phasen. Die grundlegende Idee ist hierbei, in der er- sten Planungsphase konzeptionell kleinere Fehler zuzulassen, um die Planungseffizienz zu erh ̈ohen und den resultierenden Pfad dann in einer zweiten Phase zu reparieren. Der hierzu in Phase I eingesetzte Planer basiert auf sogenannten Expansive Space Trees. Zus ̈atzlich haben wir den Planer mit einer Freidru ̈ckoperation ausgestattet, die es erlaubt, kleinere Kollisionen aufzul ̈osen und so die Effizienz in Bereichen mit eingeschr ̈ankter Bewegungsfreiheit zu erh ̈ohen. Optional erlaubt unsere Implementierung den Einsatz von approximativen Kollisionstests. Dies setzt die Genauigkeit der ersten Planungsphase weiter herab, fu ̈hrt aber auch zu einer weiteren Perfor- mancesteigerung. Die aus Phase I resultierenden Bewegungspfade sind dann unter Umst ̈anden nicht komplett kollisionsfrei. Um diese Pfade zu reparieren, haben wir einen neuartigen Pla- nungsalgorithmus entworfen, der lokal beschr ̈ankt auf eine kleine Umgebung um den bestehenden Pfad einen neuen, kollisionsfreien Bewegungspfad plant.rnWir haben den beschriebenen Algorithmus mit einer Klasse von neuen, schwierigen Metall- Puzzlen getestet, die zum Teil mehrere “narrow passages” aufweisen. Unseres Wissens nach ist eine Sammlung vergleichbar komplexer Benchmarks nicht ̈offentlich zug ̈anglich und wir fan- den auch keine Beschreibung von vergleichbar komplexen Benchmarks in der Motion-Planning Literatur.