4 resultados para chromosome variant

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Analyse der CML-Zellinie K562 mittels Fluoreszenz in situ Hybridisierung (FISH), Multiplex-FISH (M-FISH) und comparativer genomischer Hybridisierung (CGH) ergab einen hypotriploiden Karyotyp mit 67 Chromosomen und 21 verschiedenen Marker-Chromosomen. Das bei über 90% der CML-Patienten nachgewiesene Ph-Chromosom entsteht durch die reziproke Translokation t(9;22)(q34;q11). Bei 5 - 10% der Patienten resultiert das Ph-Chromosom aus varianten Translokation. Anhand der Untersuchung dreier varianter Translokation mittels Bruchpunkt-übergreifender FISH-Proben für die BCR- und ABL-Gene werden drei verschiedene Mechanismen der Entstehung komplexer Translokationen dargestellt. Das Auftreten sekundärer Aberrationen wurde in 15 CML-Blastenkrisen untersucht. Zudem wurde anhand der CGH-Analyse von CD34-positiven Zellen, Monozyten, Granulozyten und T-Zellen die Zellinienspezifität sekundärer Aberrationen untersucht. In einem Fall wurde eine sekundäre Aberration in allen vier Fraktionen gefunden. In zwei Fällen traten sekundäre Aberrationen in allen untersuchten Fraktionen mit Ausnahme der T-Zellen auf. Aufgrund dieser Ergebnisse lassen sich zwei alternative Modelle der Tumor-Progression der CML ableiten: 1. Sekundäre Mutatonen treten vor der Differenzierung der hämatopoetischen Stammzelle auf. 2. Sekundäre Mutationen treten in einer hämatopoetischen Vorläuferzelle nach der T-Zell-Differenzierung auf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative fluorescence in situ hybridization (FISH) mapping revealed four large DNA segments which have been conserved in their entirety between human chromosome 3 and Bornean orangutan chromosome 2 as well as three evolutionary breakpoints which distinguish between the human and Bornean orangutan chromosome forms. Examination of the structural and functional features of evolutionary breakpoints provides new insights into the possible effects of evolutionary rearrangements on genome function and the relationship between human chromosome pathology and evolution. FISH of human BAC clones which were assesssed in human genomic sequence to primate chromosomes, combined with precise breakpoint localizations by polymerase chain reaction (PCR) analysis of flow-sorted chromosomes and in silico analysis, were used to characterize the evolutionary breakpoints. None of the three breakpoints studied disrupts a validated gene(s), however they are all associated with segmental duplications. At least eleven DNA segments (&a

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-component system DcuSR of Escherichia coli regulates gene expression of anaerobic fumarate respiration and aerobic C4-dicarboxylate uptake. C4-dicarboxylates and citrate are perceived by the periplasmic domain of the membrane-integral sensor histidine kinase DcuS. The signal is transduced across the membrane by phosphorylation of DcuS and of the response regulator DcuR, resulting in activation of DcuR and transcription of the target genes.rnIn this work, the oligomerisation of full-length DcuS was studied in vivo and in vitro. DcuS was genetically fused to derivatives of the green fluorescent protein (GFP), enabling fluorescence resonance energy transfer (FRET) measurements to detect protein-protein interactions in vivo. FRET measurements were also performed with purified His6-DcuS after labelling with fluorescent dyes and reconstitution into liposomes to study oligomerisation of DcuS in vitro. In vitro and in vivo fluorescence resonance energy transfer showed the presence of oligomeric DcuS in the membrane, which was independent of the presence of effector. Chemical crosslinking experiments allowed clear-cut evaluation of the oligomeric state of DcuS. The results showed that detergent-solubilised His6-DcuS was mainly monomeric and demonstrated the presence of tetrameric DcuS in proteoliposomes and in bacterial membranes.rnThe sensor histidine kinase CitA is part of the two-component system CitAB of E. coli, which is structurally related to DcuSR. CitAB regulates gene expression of citrate fermentation in response to external citrate. The sensor kinases DcuS and CitA were fused with an enhanced variant of the yellow fluorescent protein (YFP) and expressed in E. coli under the control of an arabinose-inducible promoter. The subcellular localisation of DcuS-YFP and CitA-YFP within the cell membrane was studied by means of confocal laser fluorescence microscopy. Both fusion proteins were found to accumulate at the cell poles. The polar accumulation was slightly increased in the presence of the stimulus fumarate or citrate, respectively, but independent of the expression level of the fusion proteins. Cell fractionation demonstrated that polar accumulation was not related to inclusion bodies formation. The degree of polar localisation of DcuS-YFP was similar to that of the well-characterised methyl-accepting chemotaxis proteins (MCPs), but independent of their presence. To enable further investigations on the function of the polar localisation of DcuS under physiological conditions, the sensor kinase was genetically fused to the flavin-based fluorescent protein Bs2 which shows fluorescence under aerobic and anaerobic conditions. The resulting dcuS-bs2 gene fusion was inserted into the chromosome of various E. coli strains.rnFurthermore, a protein-protein interaction between the related sensor histidine kinases DcuS and CitA, regulating common metabolic pathways, was detected via expression studies under anaerobic conditions in the presence of citrate and by in vivo FRET measurements.