11 resultados para boundary integral equation method

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu entwickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewendet. Die LIT-Methode ermoeglicht exakte Rechnungen durchzufuehren, ohne explizite Bestimmung der Endzustaende im Kontinuum. Das Problem wird auf die Loesung einer bindungzustandsaehnlichen Gleichung reduziert, bei der die Endzustandswechselwirkung vollstaendig beruecksichtigt wird. Die Loesung der LIT-Gleichung wird mit Hilfe einer Entwicklung nach hypersphaerischen harmonischen Funktionen durchgefuehrt, deren Konvergenz durch Anwendung einer effektiven Wechselwirkung im Rahmem des hypersphaerischen Formalismus (EIHH) beschleunigt wird. In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungsquerschnittes fuer Photoabsorption unterhalb der Pionproduktionsschwelle an 6Li, 6He und 7Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen NN-Wechselwirkungen durchgefuehrt, die die Tensor Kraft teilweise simulieren, da die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig reproduziert werden. Der Wirkungsquerschnitt fur Photoabsorption an 6Li zeigt nur eine Dipol-Riesenresonanz, waehrend 6He zwei unterschiedliche Piks aufweist, die dem Aufbruch vom Halo und vom Alpha-Core entsprechen. Der Vergleich mit experimentellen Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Uebereinstimmung wesentlich verbessert. Bei 7Li wird nur eine Dipol-Riesenresonanz gefunden, die gut mit den verfuegbaren experimentellen Daten uebereinstimmt. Bezueglich der Elektronenstreuung wird die Berechnung der longitudinalen und transversalen Antwortfunktionen von 4He im quasi-elastischen Bereich fuer mittlere Werte des Impulsuebertrages dargestellt. Fuer die Ladungs- und Stromoperatoren wird ein nichtrelativistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wechselwirkungen durchgefuert und ein eichinvarianter Strom wird durch die Einfuehrung eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf die transversalen Antwortfunktionen wird untersucht. Vorlaeufige Ergebnisse werden gezeigt und mit den verfuegbaren experimentellen Daten verglichen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Mittelpunkt dieser Arbeit steht Beweis der Existenz- und Eindeutigkeit von Quadraturformeln, die für das Qualokationsverfahren geeignet sind. Letzteres ist ein von Sloan, Wendland und Chandler entwickeltes Verfahren zur numerischen Behandlung von Randintegralgleichungen auf glatten Kurven (allgemeiner: periodische Pseudodifferentialgleichungen). Es erreicht die gleichen Konvergenzordnungen wie das Petrov-Galerkin-Verfahren, wenn man durch den Operator bestimmte Quadraturformeln verwendet. Zunächst werden die hier behandelten Pseudodifferentialoperatoren und das Qualokationsverfahren vorgestellt. Anschließend wird eine Theorie zur Existenz und Eindeutigkeit von Quadraturformeln entwickelt. Ein wesentliches Hilfsmittel hierzu ist die hier bewiesene Verallgemeinerung eines Satzes von Nürnberger über die Existenz und Eindeutigkeit von Quadraturformeln mit positiven Gewichten, die exakt für Tschebyscheff-Räume sind. Es wird schließlich gezeigt, dass es stets eindeutig bestimmte Quadraturformeln gibt, welche die in den Arbeiten von Sloan und Wendland formulierten Bedingungen erfüllen. Desweiteren werden 2-Punkt-Quadraturformeln für so genannte einfache Operatoren bestimmt, mit welchen das Qualokationsverfahren mit einem Testraum von stückweise konstanten Funktionen eine höhere Konvergenzordnung hat. Außerdem wird gezeigt, dass es für nicht-einfache Operatoren im Allgemeinen keine Quadraturformel gibt, mit der die Konvergenzordnung höher als beim Petrov-Galerkin-Verfahren ist. Das letzte Kapitel beinhaltet schließlich numerische Tests mit Operatoren mit konstanten und variablen Koeffizienten, welche die theoretischen Ergebnisse der vorangehenden Kapitel bestätigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assuming that the heat capacity of a body is negligible outside certain inclusions the heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect these interfaces from thermal measurements on the surface of the body. We deduce an equivalent variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvability based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the inclusions, we develop an adaptation of the factorization method to this time-dependent problem. In particular this shows that the locations of the interfaces are uniquely determined by boundary measurements. The method also yields to a numerical algorithm to recover the inclusions and thus the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling of a finite element method with a boundary element method, and finally we present some numerical results for the inverse problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die chronisch obstruktive Lungenerkrankung (engl. chronic obstructive pulmonary disease, COPD) ist ein Überbegriff für Erkrankungen, die zu Husten, Auswurf und Dyspnoe (Atemnot) in Ruhe oder Belastung führen - zu diesen werden die chronische Bronchitis und das Lungenemphysem gezählt. Das Fortschreiten der COPD ist eng verknüpft mit der Zunahme des Volumens der Wände kleiner Luftwege (Bronchien). Die hochauflösende Computertomographie (CT) gilt bei der Untersuchung der Morphologie der Lunge als Goldstandard (beste und zuverlässigste Methode in der Diagnostik). Möchte man Bronchien, eine in Annäherung tubuläre Struktur, in CT-Bildern vermessen, so stellt die geringe Größe der Bronchien im Vergleich zum Auflösungsvermögen eines klinischen Computertomographen ein großes Problem dar. In dieser Arbeit wird gezeigt wie aus konventionellen Röntgenaufnahmen CT-Bilder berechnet werden, wo die mathematischen und physikalischen Fehlerquellen im Bildentstehungsprozess liegen und wie man ein CT-System mittels Interpretation als lineares verschiebungsinvariantes System (engl. linear shift invariant systems, LSI System) mathematisch greifbar macht. Basierend auf der linearen Systemtheorie werden Möglichkeiten zur Beschreibung des Auflösungsvermögens bildgebender Verfahren hergeleitet. Es wird gezeigt wie man den Tracheobronchialbaum aus einem CT-Datensatz stabil segmentiert und mittels eines topologieerhaltenden 3-dimensionalen Skelettierungsalgorithmus in eine Skelettdarstellung und anschließend in einen kreisfreien Graphen überführt. Basierend auf der linearen System Theorie wird eine neue, vielversprechende, integral-basierte Methodik (IBM) zum Vermessen kleiner Strukturen in CT-Bildern vorgestellt. Zum Validieren der IBM-Resultate wurden verschiedene Messungen an einem Phantom, bestehend aus 10 unterschiedlichen Silikon Schläuchen, durchgeführt. Mit Hilfe der Skelett- und Graphendarstellung ist ein Vermessen des kompletten segmentierten Tracheobronchialbaums im 3-dimensionalen Raum möglich. Für 8 zweifach gescannte Schweine konnte eine gute Reproduzierbarkeit der IBM-Resultate nachgewiesen werden. In einer weiteren, mit IBM durchgeführten Studie konnte gezeigt werden, dass die durchschnittliche prozentuale Bronchialwandstärke in CT-Datensätzen von 16 Rauchern signifikant höher ist, als in Datensätzen von 15 Nichtrauchern. IBM läßt sich möglicherweise auch für Wanddickenbestimmungen bei Problemstellungen aus anderen Arbeitsgebieten benutzen - kann zumindest als Ideengeber dienen. Ein Artikel mit der Beschreibung der entwickelten Methodik und der damit erzielten Studienergebnisse wurde zur Publikation im Journal IEEE Transactions on Medical Imaging angenommen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wird eine schmalbandige kontinuierliche kohärente Lyman-α-Quelle basierend auf Festkörperlasersystemen zur zukünftigen Kühlung von Antiwasserstoff vorgestellt. Die fundamentalen Festkörperlasersysteme ermöglichen es im Vier-Wellen-Misch-Prozess zur Erzeugung der Lyman-α-Strahlung nicht nur die 6^1S – 7^1S-Zwei-Photonen-Resonanz des Quecksilbers sondern erstmals auch die 6^1S – 6^3P-Ein-Photonen-Resonanz zur Erhöhung der Konversionseffizienz optimal zu nutzen. In ersten Messungen wurden 0,063nW Leistung bei Lyman-α erzeugt. Mit dieser Lyman-α-Quelle war es, durch die Nähe des ersten fundamentalen Lasers zur Ein-Photonen-Resonanz, erstmals möglich den kompletten Verlauf der Phasenanpassungskurve des Vier-Wellen- Misch-Prozesses aufzunehmen. Neben den fundamentalen Lasersystemen und der Lyman-alpha-Erzeugung selbst, wird in dieser Arbeit die Detektion der produzierten Lyman-α-Strahlung mit einem Photomultiplier vorgestellt, die soweit optimiert wurde, dass eine zuverlässige Abschätzung der erzeugten Leistung möglich ist. Für diesen Zweck wurde zudem ein Teststand aufgebaut, mit dem die Transmissivität der Optiken, welche in der Lyman-α-Apparatur verwendet werden, bei 121,56nm gemessen wurde. Des Weiteren wird hier eine vielseitige Rechnung vorgestellt, mit der die erzeugte Leistung bei Lyman-α, unter anderem in Abhängigkeit von der Temperatur, der Absorption des ersten fundamentalen Laserstrahls, dem Dichteprofil des Quecksilberdampfes und unter dem Einfluss eines Puffergases, bestimmt wird.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit untersucht den Zusammenhang zwischen Skalen in Systemen weicher Materie, der für Multiskalen-Simulationen eine wichtige Rolle spielt. Zu diesem Zweck wurde eine Methode entwickelt, die die Approximation der Separierbarkeit von Variablen für die Molekulardynamik und ähnliche Anwendungen bewertet. Der zweite und größere Teil dieser Arbeit beschäftigt sich mit der konzeptionellen und technischen Erweiterung des Adaptive Resolution Scheme'' (AdResS), einer Methode zur gleichzeitigen Simulation von Systemen mit mehreren Auflösungsebenen. Diese Methode wurde auf Systeme erweitert, in denen klassische und quantenmechanische Effekte eine Rolle spielen.rnrnDie oben genannte erste Methode benötigt nur die analytische Form der Potentiale, wie sie die meisten Molekulardynamik-Programme zur Verfügung stellen. Die Anwendung der Methode auf ein spezielles Problem gibt bei erfolgreichem Ausgang einen numerischen Hinweis auf die Gültigkeit der Variablenseparation. Bei nicht erfolgreichem Ausgang garantiert sie, dass keine Separation der Variablen möglich ist. Die Methode wird exemplarisch auf ein zweiatomiges Molekül auf einer Oberfläche und für die zweidimensionale Version des Rotational Isomer State (RIS) Modells einer Polymerkette angewandt.rnrnDer zweite Teil der Arbeit behandelt die Entwicklung eines Algorithmus zur adaptiven Simulation von Systemen, in denen Quanteneffekte berücksichtigt werden. Die Quantennatur von Atomen wird dabei in der Pfadintegral-Methode durch einen klassischen Polymerring repräsentiert. Die adaptive Pfadintegral-Methode wird zunächst für einatomige Flüssigkeiten und tetraedrische Moleküle unter normalen thermodynamischen Bedingungen getestet. Schließlich wird die Stabilität der Methode durch ihre Anwendung auf flüssigen para-Wasserstoff bei niedrigen Temperaturen geprüft.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Inhomogenitäten der Leitfähigkeit in der elektrischen Impedanztomographie auf unbeschränkten Gebieten - speziell der Halbebene bzw. dem Halbraum - untersucht. Als Lösungsräume für das direkte Problem, d.h. die Bestimmung des elektrischen Potentials zu vorgegebener Leitfähigkeit und zu vorgegebenem Randstrom, führen wir gewichtete Sobolev-Räume ein. In diesen wird die Existenz von schwachen Lösungen des direkten Problems gezeigt und die Gültigkeit einer Integraldarstellung für die Lösung der Laplace-Gleichung, die man bei homogener Leitfähigkeit erhält, bewiesen. Mittels der Faktorisierungsmethode geben wir eine explizite Charakterisierung von Einschlüssen an, die gegenüber dem Hintergrund eine sprunghaft erhöhte oder erniedrigte Leitfähigkeit haben. Damit ist zugleich für diese Klasse von Leitfähigkeiten die eindeutige Rekonstruierbarkeit der Einschlüsse bei Kenntnis der lokalen Neumann-Dirichlet-Abbildung gezeigt. Die mittels der Faktorisierungsmethode erhaltene Charakterisierung der Einschlüsse haben wir in ein numerisches Verfahren umgesetzt und sowohl im zwei- als auch im dreidimensionalen Fall mit simulierten, teilweise gestörten Daten getestet. Im Gegensatz zu anderen bekannten Rekonstruktionsverfahren benötigt das hier vorgestellte keine Vorabinformation über Anzahl und Form der Einschlüsse und hat als nicht-iteratives Verfahren einen vergleichsweise geringen Rechenaufwand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactive halogen compounds are known to play an important role in a wide variety of atmospheric processes such as atmospheric oxidation capacity and coastal new particle formation. In this work, novel analytical approaches combining diffusion denuder/impinger sampling techniques with gas chromatographic–mass spectrometric (GC–MS) determination are developed to measure activated chlorine compounds (HOCl and Cl2), activated bromine compounds (HOBr, Br2, BrCl, and BrI), activated iodine compounds (HOI and ICl), and molecular iodine (I2). The denuder/GC–MS methods have been used to field measurements in the marine boundary layer (MBL). High mixing ratios (of the order of 100 ppt) of activated halogen compounds and I2 are observed in the coastal MBL in Ireland, which explains the ozone destruction observed. The emission of I2 is found to correlate inversely with tidal height and correlate positively with the levels of O3 in the surrounding air. In addition the release is found to be dominated by algae species compositions and biomass density, which proves the “hot-spot” hypothesis of atmospheric iodine chemistry. The observations of elevated I2 concentrations substantially support the existence of higher concentrations of littoral iodine oxides and thus the connection to the strong ultra-fine particle formation events in the coastal MBL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.