11 resultados para anticancer

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last decades have witnessed significant and rapid progress in polymer chemistry and molecular biology. The invention of PCR and advances in automated solid phase synthesis of DNA have made this biological entity broadly available to all researchers across biological and chemical sciences. Thanks to the development of a variety of polymerization techniques, macromolecules can be synthesized with predetermined molecular weights and excellent structural control. In recent years these two exciting areas of research converged to generate a new type of nucleic acid hybrid material, consisting of oligodeoxynucleotides and organic polymers. By conjugating these two classes of materials, DNA block copolymers are generated exhibiting engineered material properties that cannot be realized with polymers or nucleic acids alone. Different synthetic strategies based on grafting onto routes in solution or on solid support were developed which afforded DNA block copolymers with hydrophilic, hydrophobic and thermoresponsive organic polymers in good yields. Beside the preparation of DNA block copolymers with a relative short DNA-segment, it was also demonstrated how these bioorganic polymers can be synthesized exhibiting large DNA blocks (>1000 bases) applying the polymerase chain reaction. Amphiphilic DNA block copolymers, which were synthesized fully automated in a DNA synthesizer, self-assemble into well-defined nanoparticles. Hybridization of spherical micelles with long DNA templates that encode several times the sequence of the micelle corona induced a transformation into rod-like micelles. The Watson-Crick motif aligned the hydrophobic polymer segments along the DNA double helix, which resulted in selective dimer formation. Even the length of the resulting nanostructures could be precisely adjusted by the number of nucleotides of the templates. In addition to changing the structural properties of DNA-b-PPO micelles, these materials were applied as 3D nanoscopic scaffolds for organic reactions. The DNA strands of the corona were organized by hydrophobic interactions of the organic polymer segments in such a fashion that several DNA-templated organic reactions proceeded in a sequence specific manner; either at the surface of the micelles or at the interface between the biological and the organic polymer blocks. The yields of reactions employing the micellar template were equivalent or better than existing template architectures. Aside from its physical properties and the morphologies achieved, an important requirement for a new biomaterial is its biocompatibility and interaction with living systems, i.e. human cells. The toxicity of the nanoparticles was analyzed by a cell proliferation assay. Motivated by the non-toxic nature of the amphiphilic DNA block copolymers, these nanoobjects were employed as drug delivery vehicles to target the anticancer drug to a tumor tissue. The micelles obtained from DNA block copolymers were easily functionalized with targeting units by hybridization. This facile route allowed studying the effect of the amount of targeting units on the targeting efficacy. By varying the site of functionalization, i.e. 5’ or 3’, the outcome of having the targeting unit at the periphery of the micelle or in the core of the micelle was studied. Additionally, these micelles were loaded with an anticancer drug, doxorubicin, and then applied to tumor cells. The viability of the cells was calculated in the presence and absence of targeting unit. It was demonstrated that the tumor cells bearing folate receptors showed a high mortality when the targeting unit was attached to the nanocarrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Da maligne Neoplasien durch Mutationen in Proto-Onko- und/oder Tumorsuppressorgenen ausgelöst werden, stellt die DNA eines der wichtigsten Targets für die Entwicklung neuer Zytostatika dar. Auch bei den im Arbeitskreis Pindur designten und synthetisier-ten Verbindungen der Nukleobasen-gekoppelten Pyrrolcarboxamid-, der Hetaren[a]carbazol- und der Combilexin-Reihe handelt es sich um DNA-Liganden mit potentiell antitumoraktiven Eigenschaf-ten. Die einen dualen Bindemodus aufweisenden Combilexine bestehen aus einem Interkalator (u. a. Naphthalimid, Acridon), der über einen Linker variabler Kettenlänge mit einer rinnenbin-denden, von Netropsin abgeleiteten Bispyrrol-, oder einer bioisosteren Imidazol-, Thiazol- oder Thiophen-pyrrolcarboxamid-struktur verknüpft ist. Das N-terminale Ende der Combilexine wird von einer N,N-Dimethylaminopropyl- oder -ethyl-Seitenkette gebildet. Die DNA-Affinitäten der Liganden wurden mittels Tm-Wert-Messung-en bestimmt. Diese Denaturierungsexperimente wurden sowohl mit poly(dAdT)2- als auch mit Thymus-DNA (~42% GC-Anteil) durchge-führt, um Aussagen zur Stärke und zur Sequenzselektivität der DNA-Bindung machen zu können. Des Weiteren wurden die Bindekon-stanten einiger ausgewählter Vertreter mit Hilfe des Ethidium-bromid-Verdrängungsassays ermittelt; einige Testverbindungen wurden zudem auf potentiell vorhandene, TOPO I-inhibierende Eigenschaften untersucht. Diese biochemischen und biophysika-lischen Tests wurden durch Molecular Modelling-Studien ergänzt, die die Berechnung von molekularen Eigenschaften, die Durch-führung von Konformerenanalysen und die Simulation von DNA-Ligand-Komplexen (Docking) umfassten. Durch Korrelation der in vitro-Befunde mit den in silico-Daten gelang es, vor allem für die Substanzklasse der Combilexine einige richtungweisende Struktur-Wirkungsbeziehungen aufzustellen. So konnte gezeigt werden, dass die Einführung eines Imidazol-Rings in die rinnen-bindende Hetaren-pyrrolcarboxamid-Struktur der Combilexine aufgrund der H-Brücken-Akzeptor-Funktion des sp2-hybridisierten N-Atoms eine Verschiebung der Sequenzselektivität der DNA-Bindung von AT- zu GC-reichen Arealen der DNA bedingt. Zudem erwies sich ein C3-Linker für die Verknüpfung des Naphthalimids mit dem rinnenbindenden Strukturelement als am besten geeignet, während bei den Acridon-Derivaten die Verbindungen mit einem N-terminalen Buttersäure-Linker die höchste DNA-Affinität aufwiesen. Dies ist sehr wahrscheinlich auf die im Vergleich zum Naphthalimid-Molekül geringere y-Achsen-Ausdehnung (bzgl. eines x/y-Koordinatensystems) des Acridons zurückzuführen. Die ermittelten Struktur-Wirkungsbeziehungen können dazu herangezogen werden, das rationale Design neuer DNA-Liganden mit potentiell stärkerer DNA-Bindung zu optimieren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eine neue auf einer Pyruvat abhängigen Biolumineszenzreaktion basierende Methode zur quantitativen Bestimmung und räumlichen Darstellung von Pyruvat in Gefrierschnitten von Gewebeproben wurde entwickelt. Dabei wurden biochemische Reaktionen so verknüpft, dass sichtbares Licht proportional zum eingesetzten Pyruvatgehalt entstand. Eine hoch signifikante positive Korrelation beider Parameter ermöglichte eine Kalibrierung mit definierten Pyruvatgehalten und damit die Quantifizierung in unbekannten Proben. Die Nachweisgrenze lag bei 0,04 pmol Pyruvat mit einer Auflösung von 0,02 µmol/g. Das Biolumineszenzverfahren wurde mit Hilfe anderer Methoden validiert, wobei eine Wiederfindung mit einer konzentrationsabhängigen Abweichung von ≤ 15 % erzielt wurde. Ein wesentlicher Vorteil der neuen Methode gegenüber bisherigen Verfahren zum Pyruvatnachweis liegt in der Messwerterfassung definierter histologischer Gewebsareale. Dies wird durch computergesteuerte Überlagerung von Metabolitverteilungen mit Schnittbildern aus Strukturfärbungen und interaktiver, „optischer Mikrodissektion“ der Gewebeschnitte möglich. Ein weiterer Nutzen der Methode ist deren optionale Kombination mit der Biolumineszenztechnik für andere Stoffwechselprodukte. So ermöglicht eine exakte Superposition zweier Metabolitbilder von unmittelbar aufeinander folgenden Gewebeschnitten eine korrelative Kolokalisationsanalyse beider Metabolite. Das Ergebnis lässt sich zum einen in Form von „Pixel-zu-Pixel“-Korrelationen dokumentieren, zum anderen kann für jeden Bildpunkt ein Laktat/Pyruvat-Verhältnis als Maß für den Redoxzustand des Gewebes berechnet und dargestellt werden. Hieraus ergeben sich z.B. räumliche L/P-Verteilungen (L/P-Karten). Ein solches „Redoximaging“ durch Kartierung des L/P-Quotienten ist bislang mit keinem anderen Verfahren möglich. Während die Entwicklung des Pyruvatnachweises eine Kernaufgabe der vorliegenden Arbeit darstellte, bestand ein weiterer wesentlicher Teil in der praktischen Anwendung der neuen Methode im Bereich der experimentellen Tumorforschung. So ergaben Messungen an acht verschiedenen Linien von humanen HNSCC-Xenotransplantaten (n = 70 Tumoren) einen mittleren Pyruvatgehalt von 1,24 ± 0,20 µmol/g. In sechs Humanbiopsien derselben Tumorentität wurde ein durchschnittlicher Pyruvatgehalt von 0,41 ± 0,09 µmol/g gemessen. Bei den Xenotransplantaten konnte eine signifikante positive Korrelation zwischen der Summe aus Laktat und Pyruvat bzw. dem L/P Verhältnis und der Strahlensensibilität gefunden werden, wobei das L/P-Verhältnis ebenso wie die Summe aus Laktat und Pyruvat maßgeblich von Laktat bestimmt wurden. Der Zusammenhang der Metabolite mit der Strahlensensibilität lässt sich durch deren antioxidative Eigenschaften erklären. Da der Redoxzustand der Zelle kritisch bezüglich der Effizienz von ROS induzierenden Therapieansätzen, wie z.B. Bestrahlung oder bestimmter Chemotherapeutika sein kann, könnte die Bestimmung des L/P Verhältnisses als prognostischer Faktor prädiktive Aussagen über die Sensibilität gegenüber solchen Behandlungen erlauben.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monozyten und Monozyten-abgeleitete Dendritische Zellen (DCs) spielen eine bedeutende Rolle im Immunsystem. Da DCs bei der Tumorabwehr mitwirken, ist es wichtig, dass Monozyten als auch DCs sich gegenüber zytotoxischen Agenzien aus der Chemotherapie wehren können. Chemotherapeutika reagieren mit der DNA, jedoch die DNA-Reparaturkapazität von Monozyten und DCs wurde noch nicht untersucht. Dazu wurde die Sensitivität in Monozyten und DCs gegenüber verschiedene genotoxische Agenzien untersucht. Dabei wurde herausgefunden, dass Monozyten sensitiv auf methylierende Agenzien (MNNG, MMS und Temozolomid) reagieren und ein verstärktes Zellsterben und Apoptoseinduktion zeigen. Im Vergleich zu weiteren Zytostatika wie Fotemustin, Mafosfamid und Cisplatin reagierten Monozyten und DCs gleich sensitiv. Diese Ergebnisse weisen auf einen Defekt in der Reparatur von DNA-Methylierungsschäden in Monozyten hin. Da die Expression des Reparaturproteins O6-Methylguanin-DNA Methyltransferase (MGMT) in Monozyten höher war als in DCs und deren Inhibierung durch O6-Benzylguanin keinen Effekt auf die Sensitivität von Monozyten hatte, wurde der Reparaturweg der Basenexzisionsreparatur untersucht. Im Vergleich zu DCs waren die Monozyten unfähig die BER durchzuführen, welche durch Einzelzellgelelektrophorese gemessen wurde. Expressionsuntersuchungen ergaben, dass in Monozyten XRCC1 und Ligase IIIα fehlen im Vergleich zu DCs, Makrophagen, hämatopoetische Stammzellen und Lymphozyten, welche diese Proteine exprimieren. Diese Ergebnisse zeigen einen spezifischen DNA-Reparaturdefekt in einer bestimmten Blutzellpopulation. Durch den BER Defekt in Monozyten kann es durch methylierende Tumorwirkstoffe während einer Chemotherapie zur Depletion und zu einer abgeschwächten Immunantwort kommen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca(2+) and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monozyten wie auch dendritische Zellen (DCs) und Makrophagen sind ein wichtiger Bestandteil des angeborenenen unspezifischen Immunsystems. Ein Kennzeichen dieser Zellen ist die Produktion von reaktiven Sauerstoffspezies (ROS) zur Abtötung von Pathogenen. Im Fall von chronischen Entzündungen oder Infekten kann es zu einer explosionsartigen Freisetzung freier Radikale kommen ('Oxidative Burst'). Aus vorangegangenen Untersuchungen war bekannt, dass die Expression der beiden Basen Exziosions Reparatur (BER)-Proteine XRCC1 und Ligase III während der Ausreifung humaner Monozyten zu DCs induziert wird (Briegert and Kaina, 2007). Dies lies vermuten, dass Monozyten aufgrund einer defekten BER eine hohe Sensitivität gegenüber ROS aufweisen. Um diese Hypothese zu überprüfen, wurde die Wirkung von ROS auf humane Monozyten und daraus abgeleiteten DCs und Makrophagen untersucht. In der vorliegenden Arbeit konnte gezeigt werden, dass Monozyten eine hohe Sensitivität gegenüber oxidativem Stress aufweisen, was auf eine höhere Einzelstrangbruch-Rate zurückzuführen war. Ursache hierfür ist das Fehlen der BER-Proteine XRCC1, Ligase III und PARP-1. Die fehlende Expression dieser Proteine resultierte letztendlich in Monozyten in einem Defekt der BER und DNA-Einzelstrangbruchreparatur. rnDie Proteine XRCC1, Ligase III und PARP-1 sind auch Bestandteil des Apparats des B-NHEJ ('backup-non homologous end joining'), was auf eine Beeinträchtigung der Monozyten hinsichtlich der Prozessierung von Doppelstrangbrüchen (DSBs) schließen lässt. Zur Untersuchung dieser Vermutung, wurde die Wirkung von Ionisierender Strahlung ('ionizing radiation'; IR) auf Monozyten, DCs und Makrophagen bestimmt. Monozyten zeigten eine signifikant höhere Sensitivität gegenüber IR als DCs und Makrophagen, was auf eine erhöhte DSB-Rate in den Monozyten nach IR zurückzuführen war. Expressionsanalysen und ein DNA-PK-Aktivitäts-Assay zeigten zusätzlich, dass Monozyten keine DNA-PKcs, ein bedeutender Faktor des C-NHEJ, exprimieren. Somit haben Monozyten sowohl einen Defekt im B-NHEJ als auch im C-NHEJ und sind demnach nicht in der Lage, DSBs zu reparieren.rnAuch gegenüber dem Alkylanz und Chemotherapeutikum Temozolomid bewirken die Reparaturdefekte eine hohe Sensitivität der Monozyten. Zur Therapie von Hirntumoren werden neben der Operation, die Bestrahlung und Chemotherapie mit Temozolomid angewendet. Die hohe Sensitivität von Monozyten gegenüber IR und Temozolomid könnte eine Erklärung für die starke Immunsuppression bei einer derartigen Therapie sein.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das DNA-Reparaturprotein O6-Methylguanin-DNA-Methyltransferase [MGMT] ist der Hauptresistenzfaktor gegenüber der zytotoxischen Wirkung von SN1-alkylierenden Zytostatika in der Tumortherapie. Die Verwendung der MGMT-Hemmstoffe O6-Benzylguanin [O6BG] und O6-(4-Bromothenyl)guanin [O6BTG] führte zu einer Sensibilisierung des Normalgewebes, was eine Dosis-Reduktion der Zytostatika erforderlich machte und die erhoffte Therapieverbesserung verhinderte. Aus diesem Grund ist eine Strategie der selektiven Hemmung des MGMT-Proteins (Targeting-Strategie) erforderlich, um die systemische Toxizität in der Kombinationsbehandlung zu reduzieren. In dieser Arbeit wurde die Anwendbarkeit der Glukose-Konjugation als Targeting-Strategie untersucht, da Tumorzellen einen erhöhten Glukoseverbrauch aufweisen und demzufolge Glukosetransporter überexprimieren. Die Glukose-Konjugate O6BG-Glu und O6BTG-Glu inhibierten MGMT in Tumorzellen und sensibilisierten die Zellen gegenüber den alkylierenden Agenzien Temozolomid [TMZ] und Lomustin [CCNU]. Des Weiteren inaktivierten die Glukose-Konjugate die MGMT-Aktivität im Tumor eines Xenograft-Mausmodells und reduzierten das Tumorwachstum nach einer TMZ-Behandlung im gleichen Ausmass wie die Inhibitoren O6BG und O6BTG. Trotzdem war auch mit den Glukose-Konjugaten keine Steigerung der Zytostatika-Dosis im Mausmodell möglich. Die Untersuchungen der Aufnahme von O6BG-Glu und O6BTG-Glu wiederlegten eine Involvierung der Glukosetransporter. Der Einsatz von spezifischen Glukosetransporter-Inhibitoren und Kompetitions-Experimenten führte zu keiner Verminderung der MGMT-Hemmung oder Aufnahme vom radioaktiven H3-O6BTG-Glu in die Zelle. Dies legt nahe, dass die Glukose-Konjugate über einen unspezifischen Mechanismus (aktiv) in die Zellen gelangen. Der Grund für eine mögliche unselektive Aufnahme könnte im hydrophoben Alkyllinker, der für die Konjugation des Glukosemoleküls verwendet wurde, begründet sein. Dies führt zur Generierung von amphipathischen Konjugaten, die eine initiale Bindung an die Plasmamembran aufweisen und eine Aufnahme über den Flip-Flop-Mechanismus (transbilayer transport) wahrscheinlich machen. Die amphipathische Molekülstruktur der Glukose-Konjugate führte zu einer Partikelbildung in wässrigen Lösungen, die eine Reduktion der Menge an aktiven Monomeren von O6BG-Glu und O6BTG-Glu bewirken, die zur Hemmung von MGMT zur Verfügung stehen. Der zweite Teil der Arbeit befasste sich mit der Rolle von ABC-Transportern hinsichtlich einer Targeting-Strategie von MGMT-Hemmstoffen. Obwohl eine hohe Expression dieser ABC-Transporter in Tumoren zur Resistenzentwicklung gegenüber Zytostatika führt, wurde ihr Einfluss auf MGMT-Hemmstoffe oder einer MGMT-Targeting-Strategie niemals untersucht. In dieser Arbeit wurde zum ersten Mal ein aktiver Efflux von MGMT-Hemmstoffen durch ABC-Transporter nachgewiesen. Die Inhibition von ABC-Transportern bewirkte eine schnellere Inaktivierung von MGMT durch die Glukose-Konjugate. Des Weiteren zeigten Kompetitions-Experimente mit den MGMT-Hemmstoffen eine verminderte Efflux-Rate von Fluoreszenzfarbstoffen, die spezifisch von ABC-Transportern exportiert werden. ABC-Transporter reduzieren die wirksame Konzentration des Hemmstoffes in der Zelle und beeinträchtigen somit die Effektivität der MGMT-Inhibition. Eine simultane Hemmung der ABC-Transporter P-glycoprotein (P-gp), multi resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP) erhöhte die Effektivität der MGMT-Hemmstoffe (O6BG, O6BTG, O6BG-Glu, O6BTG-Glu) und verstärkte auf diese Weise die TMZ-induzierte Toxizität in Tumorzelllinien. Die Involvierung von ABC-Transportern in der intrazellulären Speicherung von MGMT-Hemmstoffen ist wahrscheinlich die Ursache für die beobachteten Unterschiede in der Sensibilisierung verschiedener Tumorzelllinien gegenüber Zytostatika durch das Glukose-Konjugat O6BG-Glu. Eine Strategie, den Einfluss von ABC-Transportern zu reduzieren und zukünftliche MGMT-Targeting-Strategien effizienter umzusetzen, ist die Verwendung von O6BTG als Ausgangssubstanz. Die höhere Inhibitionsfähigkeit der Bromthiophenmoleküle vermindert die erforderliche intrazelluläre Konzentration für eine vollständige MGMT-Hemmung und reduziert auf diese Weise den Einfluss von ABC-Transportern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. In this study, classical intrinsic and acquired as well as new resistance mechanisms relevant in the cellular response to the novel vacuolar H+-ATPase inhibitor archazolid B were investigated. Archazolid B, originally produced by the myxobacterium Archangium gephyra, displayed cytotoxicity in the low nanomolar range on a panel of cancer cell lines. The drug showed enhanced cytotoxic activity against nearly all cancerous cells compared to their non-cancerous pendants. With regards to ABC transporters, archazolid B was identified as a moderate substrate of ABCB1 (P-glycoprotein) and a weak substrate of ABCG2 (BCRP), whereas hypersensitivity was observed in ABCB5-expressing cells. The cytotoxic effect of archazolid B was shown to be independent of the cellular p53 status. However, cells expressing constitutively active EGFR displayed significantly increased resistance. Acquired drug resistance was studied by establishing an archazolid B-resistant MCF-7 cell line. Experiments showed that this secondary resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolid B. Instead, a slight increase of ABCB1 and a significant overexpression of EGFR as well as reduced proliferation may contribute to acquired archazolid B resistance. For identification of new resistance strategies upon archazolid B treatment, omics data from bladder cancer and glioblastoma cells were analyzed, revealing drastic disturbances in cholesterol homeostasis, affecting cholesterol biosynthesis, uptake and transport. As shown by filipin staining, archazolid B led to accumulation of free cholesterol in lysosomes, which triggered sterol responses, mediated by SREBP-2 and LXR, including up-regulation of HMGCR, the key enzyme of cholesterol biosynthesis. Furthermore, inhibition of LDL uptake as well as impaired LDLR surface expression were observed, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B-treated cells. This was proven by the fact that under archazolid B treatment, total free cholesterol levels as well as cell survival were significantly reduced by inhibiting HMGCR with fluvastatin. The combination of archazolid B with statins may therefore be an attractive strategy to circumvent cholesterol-mediated cell survival and in turn potentiate the promising anticancer effects of archazolid B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Da nicht-synonyme tumorspezifische Punktmutationen nur in malignen Geweben vorkommen und das veränderte Proteinprodukt vom Immunsystem als „fremd“ erkannt werden kann, stellen diese einen bisher ungenutzten Pool von Zielstrukturen für die Immuntherapie dar. Menschliche Tumore können individuell bis zu tausenden nicht-synonymer Punktmutationen in ihrem Genom tragen, welche nicht der zentralen Immuntoleranz unterliegen. Ziel der vorliegenden Arbeit war die Hypothese zu untersuchen, dass das Immunsystem in der Lage sein sollte, mutierte Epitope auf Tumorzellen zu erkennen und zu klären, ob auf dieser Basis eine wirksame mRNA (RNA) basierte anti-tumorale Vakzinierung etabliert werden kann. Hierzu wurde von Ugur Sahin und Kollegen, das gesamte Genom des murinen B16-F10 Melanoms sequenziert und bioinformatisch analysiert. Im Rahmen der NGS Sequenzierung wurden mehr als 500 nicht-synonyme Punktmutationen identifiziert, von welchen 50 Mutationen selektiert und durch Sanger Sequenzierung validiert wurden. rnNach der Etablierung des immunologischen Testsysteme war eine Hauptfragestellung dieser Arbeit, die selektierten nicht-synonyme Punktmutationen in einem in vivo Ansatz systematisch auf Antigenität zu testen. Für diese Studien wurden mutierte Sequenzen in einer Länge von 27 Aminosäuren genutzt, in denen die mutierte Aminosäure zentral positioniert war. Durch die Länge der Peptide können prinzipiell alle möglichen MHC Klasse-I und -II Epitope abgedeckt werden, welche die Mutation enthalten. Eine Grundidee des Projektes Ansatzes ist es, einen auf in vitro transkribierter RNA basierten oligotopen Impfstoff zu entwickeln. Daher wurden die Impfungen naiver Mäuse sowohl mit langen Peptiden, als auch in einem unabhängigen Ansatz mit peptidkodierender RNA durchgeführt. Die Immunphänotypisierung der Impfstoff induzierten T-Zellen zeigte, dass insgesamt 16 der 50 (32%) mutierten Sequenzen eine T-Zellreaktivität induzierten. rnDie Verwendung der vorhergesagten Epitope in therapeutischen Vakzinierungsstudien bestätigten die Hypothese das mutierte Neo-Epitope potente Zielstrukturen einer anti-tumoralen Impftherapie darstellen können. So wurde in therapeutischen Tumorstudien gezeigt, dass auf Basis von RNA 9 von 12 bestätigten Epitopen einen anti-tumoralen Effekt zeigte.rnÜberaschenderweise wurde bei einem MHC Klasse-II restringierten mutiertem Epitop (Mut-30) sowohl in einem subkutanen, als auch in einem unabhängigen therapeutischen Lungenmetastasen Modell ein starker anti-tumoraler Effekt auf B16-F10 beobachtet, der dieses Epitop als neues immundominantes Epitop für das B16-F10 Melanom etabliert. Um den immunologischen Mechanismus hinter diesem Effekt näher zu untersuchen wurde in verschieden Experimenten die Rolle von CD4+, CD8+ sowie NK-Zellen zu verschieden Zeitpunkten der Tumorentwicklung untersucht. Die Analyse des Tumorgewebes ergab, eine signifikante erhöhte Frequenz von NK-Zellen in den mit Mut-30 RNA vakzinierten Tieren. Das NK Zellen in der frühen Phase der Therapie eine entscheidende Rolle spielen wurde anhand von Depletionsstudien bestätigt. Daran anschließend wurde gezeigt, dass im fortgeschrittenen Tumorstadium die NK Zellen keinen weiteren relevanten Beitrag zum anti-tumoralen Effekt der RNA Vakzinierung leisten, sondern die Vakzine induzierte adaptive Immunantwort. Durch die Isolierung von Lymphozyten aus dem Tumorgewebe und deren Einsatz als Effektorzellen im IFN-γ ELISPOT wurde nachgewiesen, dass Mut-30 spezifische T-Zellen das Tumorgewebe infiltrieren und dort u.a. IFN-γ sekretieren. Dass diese spezifische IFN-γ Ausschüttung für den beobachteten antitumoralen Effekt eine zentrale Rolle einnimmt wurde unter der Verwendung von IFN-γ -/- K.O. Mäusen bestätigt.rnDas Konzept der individuellen RNA basierten mutationsspezifischen Vakzine sieht vor, nicht nur mit einem mutations-spezifischen Epitop, sondern mit mehreren RNA-kodierten Mutationen Patienten zu impfen um der Entstehung von „escape“-Mutanten entgegenzuwirken. Da es nur Erfahrung mit der Herstellung und Verabreichung von Monotop-RNA gab, also RNA die für ein Epitop kodiert, war eine wichtige Fragestellungen, inwieweit Oligotope, welche die mutierten Sequenzen sequentiell durch Linker verbunden als Fusionsprotein kodieren, Immunantworten induzieren können. Hierzu wurden Pentatope mit variierender Position des einzelnen Epitopes hinsichtlich ihrer in vivo induzierten T-Zellreaktivitäten charakterisiert. Die Experimente zeigten, dass es möglich ist, unabhängig von der Position im Pentatop eine Immunantwort gegen ein Epitop zu induzieren. Des weiteren wurde beobachtet, dass die induzierten T-Zellfrequenzen nach Pentatop Vakzinierung im Vergleich zur Nutzung von Monotopen signifikant gesteigert werden kann.rnZusammenfassend wurde im Rahmen der vorliegenden Arbeit präklinisch erstmalig nachgewiesen, dass nicht-synonyme Mutationen eine numerisch relevante Quelle von Zielstrukturen für die anti-tumorale Immuntherapie darstellen. Überraschenderweise zeigte sich eine dominante Induktion MHC-II restringierter Immunantworten, welche partiell in der Lage waren massive Tumorabstoßungsreaktionen zu induzieren. Im Sinne einer Translation der gewonnenen Erkenntnisse wurde ein RNA basiertes Oligotop-Format etabliert, welches Eingang in die klinische Testung des Konzeptes fand.rn