3 resultados para amostrador de Gibbs
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Im Rahmen dieser Arbeit wurden experimentelle und theoretische Untersuchungen zum Phasen- und Grenzflächenverhalten von ternären Systemen des Typs Lösungsmittel/Fällungsmittel/Polymer durchgeführt. Diese Art der Mischungen ist vor allem für die Planung und Durchführung der Membranherstellung von Bedeutung, bei der die genaue Kenntnis des Phasendiagramms und der Grenzflächenspannung unabdingbar ist. Als Polymere dienten Polystyrol sowie Polydimethylsiloxan. Im Fall des Polystyrols kam Butanon-2 als Lösungsmittel zum Einsatz, wobei drei niedrigmolekulare lineare Alkohole als Fällungsmittel verwendet wurden. Für Polydimethylsiloxan eignen sich Toluol als Lösungsmittel und Ethanol als Fällungsmittel. Durch Lichtstreumessungen, Dampfdruckbestimmungen mittels Headspace-Gaschromatographie (VLE-Gleichgewichte) sowie Quellungsgleichgewichten lassen sich die thermodynamischen Eigenschaften der binären Subsysteme charakterisieren. Auf Grundlage der Flory-Huggins-Theorie kann das experimentell bestimmte Phasenverhalten (LLE-Gleichgewichte) in guter Übereinstimmung nach der Methode der Direktminimierung der Gibbs'schen Energie modelliert werden. Zieht man die Ergebnisse der Aktivitätsbestimmung von Dreikomponenten-Mischungen mit in Betracht, so ergeben sich systematische Abweichungen zwischen Experiment und Theorie. Sie können auf die Notwendigkeit ternärer Wechselwirkungsparameter zurückgeführt werden, die ebenfalls durch Modellierung zugänglich sind.Durch die aus den VLE- und LLE-Untersuchungen gewonnenen Ergebnissen kann die sog. Hump-Energie berechnet werden, die ein Maß für die Entmischungstendenz darstellt. Diese Größe eignet sich gut zur Beschreibung von Grenzflächenphänomenen mittels Skalengesetzen. Die für binäre Systeme gefundenen theoretisch fundierten Skalenparameter gelten jedoch nur teilweise. Ein neues Skalengesetz lässt erstmals eine Beschreibung über die gesamte Mischungslücke zu, wobei ein Parameter durch eine gemessene Grenzflächenspannung (zwischen Fällungsmittel/Polymer) ersetzt werden kann.
Resumo:
Flory-Huggins interaction parameters and thermal diffusion coefficients were measured for aqueous biopolymer solutions. Dextran (a water soluble polysaccharide) and bovine serum albumin (BSA, a water soluble protein) were used for this study. The former polymer is representative for chain macromolecules and the latter is for globular macromolecules. The interaction parameters for the systems water/dextran and water/BSA were determined as a function of composition by means of vapor pressure measurements, using a combination of headspace sampling and gas chromatography (HS-GC). A new theoretical approach, accounting for chain connectivity and conformational variability, describes the observed dependencies quantitatively for the system water/dextran and qualitatively for the system water/BSA. The phase diagrams of the ternary systems water/methanol/dextran and water/dextran/BSA were determined via cloud point measurements and modeled by means of the direct minimization of the Gibbs energy using the information on the binary subsystems as input parameters. The thermal diffusion of dextran was studied for aqueous solutions in the temperature range 15 < T < 55 oC. The effects of the addition of urea were also studied. In the absence of urea, the Soret coefficient ST changes its sign as T is varied; it is positive for T > 45.0 oC, but negative for T < 45.0 oC. The positive sign of ST means that the dextran molecules migrate towards the cold side of the fluid; this behavior is typical for polymer solutions. While a negative sign indicates the macromolecules move toward the hot side; this behavior has so far not been observed with any other binary aqueous polymer solutions. The addition of urea to the aqueous solution of dextran increases ST and reduces the inversion temperature. For 2 M urea, the change in the sign of ST is observed at T = 29.7 oC. At higher temperature ST is always positive in the studied temperature range. To rationalize these observations it is assumed that the addition of urea opens hydrogen bonds, similar to that induced by an increase in temperature. For a future extension of the thermodynamic studies to the effects of poly-dispersity, dextran was fractionated by means of a recently developed technique called Continuous Spin Fractionation (CSF). The solvent/precipitant/polymer system used for the thermodynamic studies served as the basis for the fractionation of dextran The starting polymer had a weight average molar mass Mw = 11.1 kg/mol and a molecular non-uniformity U= Mw / Mn -1= 1.0. Seventy grams of dextran were fractionated using water as the solvent and methanol as the precipitant. Five fractionation steps yielded four samples with Mw values between 4.36 and 18.2 kg/mol and U values ranging from 0.28 to 0.48.
Resumo:
The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.