3 resultados para Work - psychological aspects

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the discovery of the nuclear magnetic resonance (NMR) phenomenon, countless NMR techniques have been developed that are today indispensable tools in physics, chemistry, biology, and medicine. As one of the main obstacles in NMR is its notorious lack of sensitivity, different hyperpolarization (HP) methods have been established to increase signals up to several orders of magnitude. In this work, different aspects of magnetic resonance, using HP noble gases, are studied, hereby combining different disciplines of research. The first part examines new fundamental effects in NMR of HP gases, in theory and experiment. The spin echo phenomenon, which provides the basis of numerous modern experiments, is studied in detail in the gas phase. The changes of the echo signal in terms of amplitude, shape, and position, due to the fast translational motion, are described by an extension of the existing theory and computer simulations. With this knowledge as a prerequisite, the detection of intermolecular double-quantum coherences was accomplished for the first time in the gas phase. The second part of this thesis focuses on the development of a practical method to enhance the dissolution process of HP 129Xe, without loss of polarization or shortening of T1. Two different setups for application in NMR spectroscopy and magnetic resonance imaging (MRI) are presented. The continuous operation allows biological and multidimensional spectroscopy in solutions. Also, first in vitro MRI images with dissolved HP 129Xe as contrast agent were obtained at a clinical scanner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enhancing the sensitivity of nuclear magnetic resonance measurements via hyperpolarization techniques like parahydrogen induced polarization (PHIP) is of high interest for spectroscopic investigations. Parahydrogen induced polarization is a chemical method, which makes use of the correlation between nuclear spins in parahydrogen to create hyperpolarized molecules. The key feature of this technique is the pairwise and simultaneous transfer of the two hydrogen atoms of parahydrogen to a double or triple bond resulting in a population of the Zeeman energy levels different from the Boltzmann equation. The obtained hyperpolarization results in antiphase peaks in the NMR spectrum with high intensities. Due to these strong NMR signals, this method finds arnlot of applications in chemistry e.g. the characterization of short-lived reaction intermediates. Also in medicine it opens up the possibility to boost the sensitivity of medical diagnostics via magnetic labeling of active contrast agents. Thus, further examination and optimization of the PHIP technique is of significant importance in order to achieve the highest possible sensitivity gain.rnrnIn this work, different aspects concerning PHIP were studied with respect to its chemical and spectroscopic background. The first part of this work mainly focused on optimizing the PHIP technique by investigating different catalyst systems and developing new setups for the parahydrogenation. Further examinations facilitated the transfer of the generated polarization from the protons to heteronuclei like 13C. The second part of this thesis examined the possibility to transfer these results to different biologically active compounds to enable their later application in medical diagnostics. Onerngroup of interesting substances is represented by metabolites or neurotransmitters in mammalian cells. Other interesting substances are clinically relevant drugs like a barbituric acid derivative or antidepressant drugs like citalopram which were investigated with regard to their applicability for the PHIP technique and the possibility to achievernpolarization transfer to 13C nuclei. The last investigated substrate is a polymerizable monomer whose polymer was used as a blood plasma expander for trauma victims after the first half of the 20th century. In this case, the utility of the monomer for the PHIP technique as a basis for later investigations of a polymerization reaction using hyperpolarized monomers was examined.rnrnHence, this thesis covers the optimization of the PHIP technology, hereby combining different fields of research like chemical and spectroscopical aspects, and transfers the results to applications of real biologally acitve compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiometals play an important role in nuclear medicine as involved in diagnostic or therapeutic agents. In the present work the radiochemical aspects of production and processing of very promising radiometals of the third group of the periodic table, namely radiogallium and radiolanthanides are investigated. The 68Ge/68Ga generator (68Ge, T½ = 270.8 d) provides a cyclotron-independent source of positron-emitting 68Ga (T½ = 68 min), which can be used for coordinative labelling. However, for labelling of biomolecules via bifunctional chelators, particularly if legal aspects of production of radiopharmaceuticals are considered, 68Ga(III) as eluted initially needs to be pre-concentrated and purified. The first experimental chapter describes a system for simple and efficient handling of the 68Ge/68Ga generator eluates with a cation-exchange micro-chromatography column as the main component. Chemical purification and volume concentration of 68Ga(III) are carried out in hydrochloric acid – acetone media. Finally, generator produced 68Ga(III) is obtained with an excellent radiochemical and chemical purity in a minimised volume in a form applicable directly for the synthesis of 68Ga-labelled radiopharmaceuticals. For labelling with 68Ga(III), somatostatin analogue DOTA-octreotides (DOTATOC, DOTANOC) are used. 68Ga-DOTATOC and 68Ga-DOTANOC were successfully used to diagnose human somatostatin receptor-expressing tumours with PET/CT. Additionally, the proposed method was adapted for purification and medical utilisation of the cyclotron produced SPECT gallium radionuclide 67Ga(III). Second experimental chapter discusses a diagnostic radiolanthanide 140Nd, produced by irradiation of macro amounts of natural CeO2 and Pr2O3 in natCe(3He,xn)140Nd and 141Pr(p,2n)140Nd nuclear reactions, respectively. With this produced and processed 140Nd an efficient 140Nd/140Pr radionuclide generator system has been developed and evaluated. The principle of radiochemical separation of the mother and daughter radiolanthanides is based on physical-chemical transitions (hot-atom effects) of 140Pr following the electron capture process of 140Nd. The mother radionuclide 140Nd(III) is quantitatively absorbed on a solid phase matrix in the chemical form of 140Nd-DOTA-conjugated complexes, while daughter nuclide 140Pr is generated in an ionic species. With a very high elution yield and satisfactory chemical and radiolytical stability the system could able to provide the short-lived positron-emitting radiolanthanide 140Pr for PET investigations. In the third experimental chapter, analogously to physical-chemical transitions after the radioactive decay of 140Nd in 140Pr-DOTA, the rapture of the chemical bond between a radiolanthanide and the DOTA ligand, after the thermal neutron capture reaction (Szilard-Chalmers effect) was evaluated for production of the relevant radiolanthanides with high specific activity at TRIGA II Mainz nuclear reactor. The physical-chemical model was developed and first quantitative data are presented. As an example, 166Ho could be produced with a specific activity higher than its limiting value for TRIGA II Mainz, namely about 2 GBq/mg versus 0.9 GBq/mg. While free 166Ho(III) is produced in situ, it is not forming a 166Ho-DOTA complex and therefore can be separated from the inactive 165Ho-DOTA material. The analysis of the experimental data shows that radionuclides with half-life T½ < 64 h can be produced on TRIGA II Mainz nuclear reactor, with specific activity higher than any available at irradiation of simple targets e.g. oxides.