1 resultado para Weakly Normal Functor

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we give a definition of the term logarithmically symplectic variety; to be precise, we distinguish even two types of such varieties. The general type is a triple $(f,nabla,omega)$ comprising a log smooth morphism $fcolon Xtomathrm{Spec}kappa$ of log schemes together with a flat log connection $nablacolon LtoOmega^1_fotimes L$ and a ($nabla$-closed) log symplectic form $omegainGamma(X,Omega^2_fotimes L)$. We define the functor of log Artin rings of log smooth deformations of such varieties $(f,nabla,omega)$ and calculate its obstruction theory, which turns out to be given by the vector spaces $H^i(X,B^bullet_{(f,nabla)}(omega))$, $i=0,1,2$. Here $B^bullet_{(f,nabla)}(omega)$ is the class of a certain complex of $mathcal{O}_X$-modules in the derived category $mathrm{D}(X/kappa)$ associated to the log symplectic form $omega$. The main results state that under certain conditions a log symplectic variety can, by a flat deformation, be smoothed to a symplectic variety in the usual sense. This may provide a new approach to the construction of new examples of irreducible symplectic manifolds.