2 resultados para WHOLE HUMAN ENAMEL

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

40.00% 40.00%

Publicador:

Resumo:

All currently available human skeletal remains from the Wadi Howar (Eastern Sahara, Sudan) were employed in an anthropological study. The study’s first aim was to describe this unique 5th to 2nd millennium BCE material, which comprised representatives of all three prehistoric occupation phases of the region. Detecting diachronic differences in robusticity, occupational stress levels and health within the spatially, temporally and culturally heterogeneous sample was its second objective. The study’s third goal was to reveal metric and non-metric affinities between the different parts of the series and between the Wadi Howar material and other relevant prehistoric as well as modern African populations. rnThe reconstruction and comprehensive osteological analysis of 23 as yet unpublished individuals, the bulk of the Wadi Howar series, constituted the first stage of the study. The analyses focused on each individual’s in situ position, state of preservation, sex, age at death, living height, living weight, physique, biological ancestry, epigenetic traits, robusticity, occupational stress markers, health and metric as well as morphological characteristics. Building on the results of these efforts and the re-examination of the rest of the material, the Wadi Howar series as a whole, altogether 32 individuals, could be described. rnA wide variety of robusticity, occupational stress and health variables was evaluated. The pre-Leiterband (hunter-gatherer-fisher/hunter-gatherer-fisher-herder) and the Leiterband (herder-gatherer) data of over a third of these variables differed statistically significantly or in tendency from each other. The Leiterband sub-sample was characterised by higher enamel hypoplasia frequencies, lower mean ages at death and less pronounced expressions of occupational stress traits. This pattern was interpreted as evidence that the adoption and intensification of animal husbandry did probably not constitute reactions to worsening conditions. Apart from that, the relevant observations, noteworthy tendencies and significant differences were explained as results of a broader spectrum of pre-Leiterband subsistence activities and the negative side effects of the increasingly specialised herder-gatherer economy of the Leiterband phase. rnUsing only the data which could actually be collected from it, multiple, separate, individualised discriminant function analyses were carried out for each Wadi Howar skeleton to determine which prehistoric and which modern comparative sample it was most similar to. The results of all individual analyses were then summarised and examined as a whole. Thus it became possible to draw conclusions about the affinities the Wadi Howar material shared with prehistoric as well as modern populations and to answer questions concerning the diachronic links between the Wadi Howar’s prehistoric populations. When the Wadi Howar remains were positioned in the context of the selected prehistoric (Jebel Sahaba/Tushka, A-Group, Malian Sahara) and modern comparative samples (Southern Sudan, Chad, Mandinka, Somalis, Haya) in this fashion three main findings emerged. Firstly, the series as a whole displayed very strong affinities with the prehistoric sample from the Malian Sahara (Hassi el Abiod, Kobadi, Erg Ine Sakane, etc.) and the modern material from Southern Sudan and, to a lesser extent, Chad. Secondly, the pre-Leiterband and the Leiterband sub-sample were closer to the prehistoric Malian as well as the modern Southern Sudanese material than they were to each other. Thirdly, the group of pre-Leiterband individuals approached the Late Pleistocene sample from Jebel Sahaba/Tushka under certain circumstances. A theory offering explanations for these findings was developed. According to this theory, the entire prehistoric population of the Wadi Howar belonged to a Saharo-Nilotic population complex. The Jebel Sahaba/Tushka population constituted an old Nilotic and the early population of the Malian Sahara a younger Saharan part of this complex. The pre-Leiterband groups probably colonised the Wadi Howar from the east, either during or soon after the original Saharo-Nilotic expansion. Unlike the pre-Leiterband groups, the Leiterband people originated somewhere west of the Wadi Howar. They entered the region in the context of a later, secondary Saharo-Nilotic expansion. In the process, the incoming Leiterband groups absorbed many members of the Wadi Howar’s older pre-Leiterband population. The increasing aridification of the Wadi Howar region ultimately forced its prehistoric inhabitants to abandon the wadi. Most of them migrated south and west. They, or groups closely related to them, probably were the ancestors of the majority of the Nilo-Saharan-speaking pastoralists of modern-day Southern Sudan and Eastern Chad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.