4 resultados para Volcanic Eruptions

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composition of the atmosphere is frequently perturbed by the emission of gaseous and particulate matter from natural as well as anthropogenic sources. While the impact of trace gases on the radiative forcing of the climate is relatively well understood the role of aerosol is far more uncertain. Therefore, the study of the vertical distribution of particulate matter in the atmosphere and its chemical composition contribute valuable information to bridge this gap of knowledge. The chemical composition of aerosol reveals information on properties such as radiative behavior and hygroscopicity and therefore cloud condensation or ice nucleus potential. rnThis thesis focuses on aerosol pollution plumes observed in 2008 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) campaign over Greenland in June/July and CONCERT (Contrail and Cirrus Experiment) campaign over Central and Western Europe in October/November. Measurements were performed with an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) capable of online size-resolved chemical characterization of non-refractory submicron particles. In addition, the origins of pollution plumes were determined by means of modeling tools. The characterized pollution episodes originated from a large variety of sources and were encountered at distinct altitudes. They included pure natural emissions from two volcanic eruptions in 2008. By the time of detection over Western Europe between 10 and 12 km altitude the plume was about 3 months old and composed to 71 % of particulate sulfate and 21 % of carbonaceous compounds. Also, biomass burning (BB) plumes were observed over Greenland between 4 and 7 km altitude (free troposphere) originating from Canada and East Siberia. The long-range transport took roughly one and two weeks, respectively. The aerosol was composed of 78 % organic matter and 22 % particulate sulfate. Some Canadian and all Siberian BB plumes were mixed with anthropogenic emissions from fossil fuel combustion (FF) in North America and East Asia. It was found that the contribution of particulate sulfate increased with growing influences from anthropogenic activity and Asia reaching up to 37 % after more than two weeks of transport time. The most exclusively anthropogenic emission source probed in the upper troposphere was engine exhaust from commercial aircraft liners over Germany. However, in-situ characterization of this aerosol type during aircraft chasing was not possible. All long-range transport aerosol was found to have an O:C ratio close to or greater than 1 implying that low-volatility oxygenated organic aerosol was present in each case despite the variety of origins and the large range in age from 3 to 100 days. This leads to the conclusion that organic particulate matter reaches a final and uniform state of oxygenation after at least 3 days in the free troposphere. rnExcept for aircraft exhaust all emission sources mentioned above are surface-bound and thus rely on different types of vertical transport mechanisms, such as direct high altitude injection in the case of a volcanic eruption, or severe BB, or uplift by convection, to reach higher altitudes where particles can travel long distances before removal mainly caused by cloud scavenging. A lifetime for North American mixed BB and FF aerosol of 7 to 11 days was derived. This in consequence means that emission from surface point sources, e.g. volcanoes, or regions, e.g. East Asia, do not only have a relevant impact on the immediate surroundings but rather on a hemispheric scale including such climate sensitive zones as the tropopause or the Arctic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stratosphärische Partikel sind typischerweise mit dem bloßen Auge nicht wahrnehmbar. Dennoch haben sie einen signifikanten Einfluss auf die Strahlungsbilanz der Erde und die heteorogene Chemie in der Stratosphäre. Kontinuierliche, vertikal aufgelöste, globale Datensätze sind daher essenziell für das Verständnis physikalischer und chemischer Prozesse in diesem Teil der Atmosphäre. Beginnend mit den Messungen des zweiten Stratospheric Aerosol Measurement (SAM II) Instruments im Jahre 1978 existiert eine kontinuierliche Zeitreihe für stratosphärische Aerosol-Extinktionsprofile, welche von Messinstrumenten wie dem zweiten Stratospheric Aerosol and Gas Experiment (SAGE II), dem SCIAMACHY, dem OSIRIS und dem OMPS bis heute fortgeführt wird. rnrnIn dieser Arbeit wird ein neu entwickelter Algorithmus vorgestellt, der das sogenannte ,,Zwiebel-Schäl Prinzip'' verwendet, um Extinktionsprofile zwischen 12 und 33 km zu berechnen. Dafür wird der Algorithmus auf Radianzprofile einzelner Wellenlängen angewandt, die von SCIAMACHY in der Limb-Geometrie gemessen wurden. SCIAMACHY's einzigartige Methode abwechselnder Limb- und Nadir-Messungen bietet den Vorteil, hochaufgelöste vertikale und horizontale Messungen mit zeitlicher und räumlicher Koinzidenz durchführen zu können. Die dadurch erlangten Zusatzinformationen können verwendet werden, um die Effekte von horizontalen Gradienten entlang der Sichtlinie des Messinstruments zu korrigieren, welche vor allem kurz nach Vulkanausbrüchen und für polare Stratosphärenwolken beobachtet werden. Wenn diese Gradienten für die Berechnung von Extinktionsprofilen nicht beachtet werden, so kann dies dazu führen, dass sowohl die optischen Dicke als auch die Höhe von Vulkanfahnen oder polarer Stratosphärenwolken unterschätzt werden. In dieser Arbeit wird ein Verfahren vorgestellt, welches mit Hilfe von dreidimensionalen Strahlungstransportsimulationen und horizontal aufgelösten Datensätzen die berechneten Extinktionsprofile korrigiert.rnrnVergleichsstudien mit den Ergebnissen von Satelliten- (SAGE II) und Ballonmessungen zeigen, dass Extinktionsprofile von stratosphärischen Partikeln mit Hilfe des neu entwickelten Algorithmus berechnet werden können und gut mit bestehenden Datensätzen übereinstimmen. Untersuchungen des Nabro Vulkanausbruchs 2011 und des Auftretens von polaren Stratosphärenwolken in der südlichen Hemisphäre zeigen, dass das Korrekturverfahren für horizontale Gradienten die berechneten Extinktionsprofile deutlich verbessert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flugzeuggestützte Messungen des atmosphärischen Aerosols: Saharastaub, stratosphärisches Hintergrundaerosol und nichtsichtbare Wolken in den Tropen Im Rahmen der vorliegenden Arbeit wurden flugzeuggestütze Messungen des atmosphärischen Aerosols durchgeführt. Das hierfür eingesetzten Meßinstrument (FSSP-300) mißt die Intensität des von einzelnen Aerosolpartikeln in Vorwärtsrichtung gestreuten Lichts. Der Meßbereich umfaßt Partikeldurchmesser von ca. 0,4 µm bis 20 µm. Das FSSP-300 wurde auf mehreren Flugzeugen eingesetzt, u. a. auch erstmals auf dem russischen Höhenforschungsflugzeug Geophysika. Bei der Meßkampagen ACE-2 wurden im Juli 1997 von Teneriffa aus zwei Schichten windgetragenen Sahara-Staubes beobachtet. Die tiefere Schicht reichte bis in 1500 m Höhe, die höhere Schicht bis in 6000 m bei einer Schichtdicke von über 3000 m. In einer Analyse der Wetterlage und von Rückwärtstrajektorien wird der Ursprung des Staubes dargestellt. Die mit dem FSSP-300 gemessenen Größenverteilungen werden durch Messungen anderer Partikel-Meßinstrumente ergänzt und mit Literaturdaten verglichen. Im Rahmen der Untersuchung des stratosphärischen Aerosols wurden Messungen aus zwei Perioden ohne vulkanischen Einfluß und aus der Zeit nach dem Ausbruch des Vulkans Pinatubo verglichen. Die beiden Perioden reinen Hintergrundaerosols lagen mit über fünf Jahren eine vergleichbare Zeitspanne nach großen Vulkanausbrüchen. Die Analyse der Aerosolmessungen umfaßt den zeitlichen Verlauf der Gesamtkonzentration als auch den Vergleich von Größenverteilungen aus den verschiedenen Perioden. Bei den Flügen über dem Indischen Ozean während der Meßkampagne APE-THESEO auf den Seychellen wurden verschiedene Schichten von Cirren im Bereich des Ausläufers eines Cumulonimbus und direkt an der Tropopause beobachtet. Letztere und auch einige Bereiche der ersteren waren nichtsichtbar, d. h. hatten eine optische Dicke von weniger als 0,03 im sichtbaren Licht. Die Partikelmessungen werden auch im Kontext der Ergebnisse anderer Meßinstrumente und einer meteorologischen Analyse der Wettersituation betrachtet. Die gemessenen Größenverteilungen sind eine wichtige Ergänzung der wenigen früheren Veröffentlichungen zu diesem Thema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Eifel volcanism is part of the Central European Volcanic Province (CEVP) and is located in the Rhenish Massif, close to the Rhine and Leine Grabens. The Quaternary Eifel volcanism appears to be related to a mantle plume activity. However, the causes of the Tertiary Hocheifel volcanism remain debated. We present geochronological, geochemical and isotope data to assess the geotectonic settings of the Tertiary Eifel volcanism. Based on 40Ar/39Ar dating, we were able to identify two periods in the Hocheifel activity: from 43.6 to 39.0 Ma and from 37.5 to 35.0 Ma. We also show that the pre-rifting volcanism in the northernmost Upper Rhine Graben (59 to 47 Ma) closely precede the Hocheifel volcanic activity. In addition, the volcanism propagates from south to north within the older phase of the Hocheifel activity. At the time of Hocheifel volcanism, the tectonic activity in the Hocheifel was controlled by stress field conditions identical to those of the Upper Rhine Graben. Therefore, magma generation in the Hocheifel appears to be caused by decompression due to Middle to Late Eocene extension. Our geochemical data indicate that the Hocheifel magmas were produced by partial melting of a garnet peridotite at 75-90 km depth. We also show that crustal contamination is minor although the magmas erupted through a relatively thick continental lithosphere. Sr, Nd and Pb isotopic compositions suggest that the source of the Hocheifel magmas is a mixing between depleted FOZO or HIMU-like material and enriched EM2-like material. The Tertiary Hocheifel and the Quaternary Eifel lavas appear to have a common enriched end-member. However, the other sources are likely to be distinct. In addition, the Hocheifel lavas share a depleted component with the other Tertiary CEVP lavas. Although the Tertiary Hocheifel and the Quaternary Eifel lavas appear to originate from different sources, the potential involvement of a FOZO-like component would indicate the contribution of deep mantle material. Thus, on the basis of the geochemical and isotope data, we cannot rule out the involvement of plume-type material in the Hocheifel magmas. The Ko’olau Scientific Drilling Project (KSDP) has been initiated in order to evaluate the long-term evolution of Ko’olau volcano and obtain information about the Hawaiian mantle plume. High precision Pb triple spike data, as well as Sr and Nd isotope data on KSDP lavas and Honolulu Volcanics (HVS) reveal compositional source variations during Ko’olau growth. Pb isotopic compositions indicate that, at least, three Pb end-members are present in Ko’olau lavas. Changes in the contributions of each component are recorded in the Pb, Sr and Nd isotopes stratigraphy. The radiogenic component is present, at variable proportion, in all three stages of Ko’olau growth. It shows affinities with the least radiogenic “Kea-lo8” lavas present in Mauna Kea. The first unradiogenic component was present in the main-shield stage of Ko’olau growth but its contribution decreased with time. It has EM1 type characteristics and corresponds to the “Ko’olau” component of Hawaiian mantle plume. The second unradiogenic end-member, so far only sampled by Honololu lavas, has isotopic characteristics similar to those of a depleted mantle. However, they are different from those of the recent Pacific lithosphere (EPR MORB) indicating that the HVS are not derived from MORB-related source. We suggest, instead, that the HVS result from melting of a plume material. Thus the evolution of a single Hawaiian volcano records the geochemical and isotopic changes within the Hawaiian plume.